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Among numerical sequences, the Fibonacci numbers F, have achieved a kind of
celebrity status. Indeed, Koshy gushingly refers to them as one of the “two shining
stars in the vast array of integer sequences” [16, p. xi]. The second of Koshy’s “shining
stars” is the Lucas numbers, a close relative of the Fibonacci numbers, about which
we will say more below. The Fibonacci numbers are famous for possessing wonderful
and amazing properties. Some are well known. For example, the sums and differences
of Fibonacci numbers are Fibonacci numbers, and the ratios of Fibonacci numbers
converge to the golden mean. Others are less familiar. Did you know that any four
consecutive Fibonacci numbers can be combined to form a Pythagorean triple? Or
how about this: The greatest common divisor of two Fibonacci numbers is another
Fibonacci number. More precisely, the gcd of F, and F,, is F, where k is the gcd of n
and m.

With such fabulous properties, it is no wonder that the Fibonacci numbers stand out
as a kind of super sequence. But what if it is not such a special sequence after all?
What if it is only a rather pedestrian sample from an entire race of super sequences?
In this case, the home world is the planet of two-term recurrences. As we shall show,
its inhabitants are all just about as amazing as the Fibonacci sequence.

The purpose of this paper is to demonstrate that many of the properties of the Fi-
bonacci numbers can be stated and proved for amuch more general class of sequences,
namely, second-order recurrences. We shall begin by reviewing a selection of the prop-
erties that made Fibonacci numbers famous. Then there will be a survey of second-
order recurrences, as well as general tools for studying these recurrences. A number of
the properties of the Fibonacci numbers will be seen to arise simply and naturally as
the tools are presented. Finally, we will see that Fibonacci connections to Pythagorean
triples and the ged function also generalize in a natural way.

Famous Fibonacci properties

The Fibonacci numbers F,, are the terms of the sequence 0, 1, 1,2, 3, 5, ... wherein
each term is the sum of the two preceding terms, and we get things started with 0
and 1 as Fp and F;. You cannot go very far in the lore of Fibonacci numbers without
encountering the companion sequence of Lucas numbers L,, which follows the same
recursive pattern as the Fibonacci numbers, but begins with Lo =2 and L, = 1. The
first several Lucas numbers are therefore 2, 1, 3, 4, 7.

Regarding the origins of the subject, Koshy has this to say:

The sequence was given its name in May of 1876 by the outstanding French
mathematician Frangois Edouard Anatole Lucas, who had originally called it
“the series of Lamé,” after the French mathematician Gabriel Lamé [16, p. 5].



168 MATHEMATICS MAGAZINE

Although Lucas contributed a great deal to the study of the Fibonacci numbers, he
was by no means alone, as a perusal of Dickson [4, Chapter XVII] reveals. In fact,
just about all the results presented here were first published in the nineteenth cen-
tury. In particular, in his foundational paper [17], Lucas, himself, investigated the
generalizations that interest us. These are sequences A, defined by a recursive rule
Any2 = aA,4 + bA, where a and b are fixed constants. We refer to such a sequence
as a two-term recurrence.

The popular lore of the Fibonacci numbers seems not to include these general-
izations, however. As a case in point, Koshy [16] has devoted nearly 700 pages to
the properties of Fibonacci and Lucas numbers, with scarcely a mention of general
two-term recurrences. Similar, but less encyclopedic sources are Hoggatt [9], Hons-
berger [11, Chapter 8], and Vajda [21]. There has been a bit more attention paid to
so-called generalized Fibonacci numbers, A,, which satisfy the same recursive for-
mula A,y = A,+1 + Ay, but starting with arbitrary initial values Ay and A;, particu-
larly by Horadam (see for example Horadam [12], Walton and Horadam [22], as well
as Koshy [16, Chapter 7]). Horadam also investigated the same sort of sequences we
consider, but he focused on different aspects from those presented here [14, 15]. In
[14] he includes our Examples 3 and 7, with an attribution to Lucas’s 1891 Théorie
des Nombres. With Shannon, Horadam also studied Pythagorean triples, and their pa-
per [20] goes far beyond the connection to Fibonacci numbers considered here. Among
more recent references, Bressoud [3, chapter 12] discusses the application of general-
ized Fibonacci sequences to primality testing, while Hilton and Pedersen [8] present
some of the same results that we do. However, none of these references share our gen-
eral point of emphasis, that in many cases, properties commonly perceived as unique
to the Fibonacci numbers, are actually shared by large classes of sequences.

It would be impossible to make this point here in regard to all known Fibonacci
properties, as Koshy’s tome attests. We content ourselves with a small sample, listed
below. We have included page references from Koshy [16].

Sum of squares ) | F? = F,F,;,. (Page 77.)
Lucas-Fibonacci connection L,,; = F,, + F,. (Page 80.)
Binet formulas The Fibonacci and Lucas numbers are given by

F=C"P d L —a 1 p,
a—p
where
1+4/5 1-
o= V5 and B = \/3.
2 2
(Page 79.)

Asymptotic behavior F,.,/F, — o asn — oo. (Page 122.)
Runningsum ) | F, = F,,, — 1. (Page 69.)
Matrix form We present a slightly permuted form of what generally appears in the

literature. Our version is

011" [ F. F

1 1 - F, F.q |’
(Page 363.)

Cassini’s formula F,_ F,.; — F? = (—1)". (Page 74)
Convolution property F, = F,,F,_+1 + Fin_1Fo_n. (Page 88, formula 6.)
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Pythagorean triples If w, x, y, z are four consecutive Fibonacci numbers, then
(wz, 2xy, yz — wx) is a Pythagorean triple. That is, (wz)? + (2xy)? = (yz — wx)>.
(Page 91, formula 88.)

Greatest common divisor gcd(F,, F,) = Fyeqon,n)- (Page 198.)

This is, as mentioned, just a sample of amazing properties of the Fibonacci and
Lucas numbers. But they all generalize in a natural way to classes of two-term recur-
rences. In fact, several of the proofs arise quite simply as part of a general development
of the recurrences. We proceed to that topic next.

Generalized Fibonacci and Lucas numbers

Let @ and b be any real numbers. Define a sequence A, as follows. Choose initial
values A and A,. All succeeding terms are determined by

An+2=aAn+l +bAn (1)

For fixed a and b, we denote by R(a, b) the set of all such sequences. To avoid a trivial
case, we will assume that b # 0.

In R(a, b), we define two distinguished elements. The first, F', has initial terms
0 and 1. In R(1, 1), F is thus the Fibonacci sequence. In the more general case, we
refer to F as the (a, b)-Fibonacci sequence. Where no confusion will result, we will
suppress the dependence on a and b. Thus, in every R{a, b), there is an element F
that begins with 0 and 1, and this is the Fibonacci sequence for R(a, b).

Although F is the primordial sequence in R(a, b), there is another sequence L that
is of considerable interest. It starts with Ly, = 2 and L, = «a. As will soon be clear, L
plays the same role in R(a, b) as the Lucas numbers play in R(1, 1). Accordingly, we
refer to L as the (a, b)-Lucas sequence. For the most part, there will be only one a and
b under consideration, and it will be clear from context which R(a, b) is the home for
any particular mention of F or L. In the rare cases where some ambiguity might occur,
we will use F@» and L to indicate the F and L sequences in R(a, b).

In the literature, what we are calling F and L have frequently been referred to as Lu-
cas sequences (see Bressoud [3, chapter 12] and Weisstein [23, p. 1113]) and denoted
by U and V, the notation adopted by Lucas in 1878 [17]. We prefer to use F and L to
emphasize the idea that there are Fibonacci and Lucas sequences in each R(a,b), and
that these sequences share many properties with the traditional F and L. In contrast,
it has sometimes been the custom to attach the name Lucas to the L sequence for a
particular R(a, b). For example, in R (2, 1), the elements of F have been referred to
as Pell numbers and the elements of L as Pell-Lucas numbers [23, p. 1334].

Examples Of course, the most familiar example is R (1, 1), in which F and L are the
famous Fibonacci and Lucas number sequences. But there are several other choices of
a and b that lead to familiar examples.

Example 1: R(11, —10). The Fibonacci sequence in this family is F =0, 1, 11,
111, 1111, ... the sequence of repunits, and L = 2, 11,101, 1001,
10001, . ... The initial 2, which at first seems out of place, can be viewed
as the result of putting two 1s in the same position.

Example 2: R(2, —1). Here F is the sequence of whole numbers 0, 1, 2, 3,4, ..., and
L is the constant sequence 2, 2, 2, .. .. More generally, R(2, —1) consists
of all the arithmetic progressions.
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Example 3: R(3, -2). F =0,1,3,7,15,31, ... is the Mersenne sequence, and L =
2,3,5/9,17,33, ... is the Fermat sequence. These are just powers of 2
plus or minus 1.

Example 4: R(1,-1). F=0,1,1,0,-1,-1,0,1,1,...and L =2,1, -1, =2, —1,
1,2, 1, —1, .... Both sequences repeat with period 6, as do all the ele-
ments of R(1, —1).

Example 5: R(3,-1). F=0,1,3,8,21,...and L =2,3,7,18,.... Do you recog-
nize these? They are the even-numbered Fibonacci and Lucas numbers.

Example 6: R(4,1). F =0,1,4,17,72,...and L =2,4,18,76,.... Here, L gives
every third Lucas number, while F gives 1/2 of every third Fibonacci
number.

Example 7: R(2,1). F =0,1,2,5,12,29,70,... and L =2,2,6,14,34,82, ....
These are the Pell sequences, mentioned earlier. In particular, for any
n, (x,y) = (Fau + Fau_1, F2,) gives a solution to Pell’s Equation x? —
2y? = 1. This extends to the more general Pell equation, x> — dy? =1,
when d = k? + 1. Then, using the F sequence in R(2k, 1), we obtain
solutions of the form (x, y) = (kFa, + Fan—1, F2,). Actually, equations
of this type first appeared in the Archimedean cattle problem, and were
considered by the Indian mathematicians Brahmagupta and Bhaskara [2,
p. 221]. Reportedly, Pell never worked on the equations that today bear
his name. Instead, according to Weisstein [23], “while Fermat deserves
the credit for being the first [European] to extensively study the equa-
tion, the erroneous attribution to Pell was perpetrated by none other than
Euler.”

Coincidentally, the even terms F,, in R(a, 1) also appear in another
generalized Fibonacci result, related to an identity discussed elsewhere
in this issue of the MAGAZINE [6]. The original identity for normal Fi-
bonacci numbers is

1 1 1
arctan = arctan -+ arctan .
(FZn) (F2n+l> (F2n+2>

For F € R(a, 1) the corresponding result is

1 a 1
arctan ( ) = arctan ( ) + arctan ( ) )
F, Fauyy Fruy2

The wonderful world of two-term recurrences

The Fibonacci and Lucas sequences are elements of R (1, 1), and many of their prop-
erties follow immediately from the recursive rule that each term is the sum of the two
preceding terms. Similarly, it is often easy to establish corresponding properties for el-
ements of R(a, b) directly from the fundamental identity (1). For example, in R(1, 1),
the Sum of Squares identity is

Fl+F}+- + F}=F,Fy.
The generalization of this to R(a, b) is

FnFn+1

V'F24+b"'F24 ...+ bF2, + F?= (2)

This can be proved quite easily using (1) and induction.
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Many of the other famous properties can likewise be established by induction. But
to provide more insight about these properties, we will develop some analytic methods,
organized loosely into three general contexts. First, we can think of R(a, b) as a sub-
set of R, the real vector space of real sequences, and use the machinery of difference
operators. Second, by deriving Binet formulas for elements of R (a, b), we obtain ex-
plicit representations as linear combinations of geometric progressions. Finally, there
is a natural matrix formulation which is tremendously useful. We explore each of these
contexts in turn.

Difference operators We will typically represent elements of R™ with uppercase
roman letters, in the form

A= Ao Ay, A, ...

There are three fundamental linear operators on R™ to consider. The first is the left-
shift, A. For any real sequence A = Agp, A}, Az, ..., the shifted sequence is AA =
A, Ay As, e

This shift operator is a kind of discrete differential operator. Recurrences like (1)
are also called difference equations. Expressed in terms of A, (1) becomes

(A’ —aA —b)A =0.

This is analogous to expressing a differential equation in terms of the differential op-
erator, and there is a theory of difference equations that perfectly mirrors the theory
of differential equations. Here, we have in mind linear constant coefficient differential
and difference equations.

As one fruit of this parallel theory, we see at once that A> —aA — b is a linear
operator on R*, and that R(a, b) is its null space. This shows that R(a, b) is a sub-
space of R*°. We will discuss another aspect of the parallel theories of difference and
differential equation in the succeeding section on Binet formulas.

Note that any polynomial in A is a linear operator on R*, and that all of these oper-
ators commute. For example, the forward difference operator A, defined by (AA), =
Ap+1 — Ay, is given by A = A — 1. Similarly, consider the k-term sum, %, defined
by (ZxA), = A, + A1 + -+ - + Ausx—r- To illustrate, £,(A) is the sequence Ay +
A, A + A,, Ay 4+ As, ... These sum operators can also be viewed as polynomials
inA: S, =14+A+A24+--- 4+ AL

Because these operators commute with A, they are operators on R(a, b), as well. In
general, if W is an operator that commutes with A, we observe that ¥ also commutes
with A2 —aA — b. Thus, if A € R(a, b), then (A2 —aA — b)WA = W(A%? —aA —
b)A = W0 = 0. This shows that WA € R(a, b). In particular, R(a, b) is closed under
differences and k-term sums.

This brings us to the second fundamental operator, the cumulative sum X. It is
defined as follows: X (A) = Ag, Ag + A1, Ag+ A} + Ay, .... This is not expressible
in terms of A, nor does it commute with A, in general. However, there is a simple
relation connecting the two operators:

AT = A. 3

This is a sort of discrete version of the fundamental theorem of calculus. In the opposite
order, we have

(BAA), = App1 — Ao,
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a discrete version of the other form of the fundamental theorem. It is noteworthy that
Leibniz worked with these sum and difference operators as a young student, and later
identified this work as his inspiration for calculus (Edwards [5, p. 234]).

The final fundamental operator is the k-skip, €2, which selects every kth element
of a sequence. That is, 2, (A) = Ay, Ax, Ak, A3, - - .. By combining these operators
with powers of A, we can sample the terms of a sequence according to any arithmetic
progression. For example,

QsA3A = A;, Ag, A, - . ..

Using the context of operators and the linear space R(a, b), we can derive useful
results. First, it is apparent that once Ay and A, are chosen, all remaining terms are
completely determined by (1). This shows that R(a, b) is a two-dimensional space.
Indeed, there is a natural basis {E, F} where E has starting values 1 and 0, and F,
with starting values 0 and 1, is the (a, b)-Fibonacci sequence. Thus

E=1,0,b,ab,a*bh +b%,...
F=0,1,a,ad*+b,a°+2ab, ....

Clearly, A = AgE + A F forall A € R(a, b). Note further that AE = bF, so that we
can easily express any A just using F:

A, =bAgF,_ + A F, “4)

As an element of R(a, b), L can thus be expressed in terms of F. From (4), we
have

Ln = ZbF,,,| +Can.
But the fundamental recursion (1) then leads to
anbFn—I+Fn+l' (5)

This is the analog of the Lucas-Fibonacci connection stated above.

Recall that the difference and the k-term sum operators all preserve R(a, b). Thus,
AF and X, F are elements of R (a, b) and can be expressed in terms of F using (4).
The case for X is a more interesting application of operator methods. The question is
this: If A € R(a, b), what can we say about X A?

As a preliminary step, notice that a sequence is constant if and only if it is an-
nihilated by the difference operator A. Now, suppose that A € R(a, b). That means
(A? —aA — b)A =0, and so too

A(A?—aA —b)A =0.
Now commute A with the other operator, and use (3) to obtain
(A’ —aA —b)ATA =0.
Finally, since A and A commute, pull A all the way to the front to obtain
A(A*—aA —bh)TA =0.

This shows that while (A> — aA — b)X A may not be 0 (indicating A ¢ R(a, b)), at
worst it is constant. Now it turns out that there are two cases. If @ + b # 1, it can be
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shown that ¥ A differs from an element of R (a, b) by a constant. That tells us at once
that there is an identity of the form

(EA)n = COFn + Can—l + ¢,

which corresponds to the running sum property for Fibonacci numbers. We will defer
the determination of the constants ¢; to the section on Binet formulas.

Here is the verification that X A differs from an element of R (a, b) by a constant
when a + b # 1. We know that (A2 —aA — b)X A is a constant ¢;. Suppose that we
can find another constant, ¢, such that (A> —aA — b)c = ¢,. Then we would have
(A> —aA —b)(ZTA —¢) =0, hence TA — ¢ € R(a, b). It is an exercise to show ¢
can be found exactly whena + b # 1.

When a + b = 1 we have the second case. A little experimentation with (1) will
show you that in this case R (a, b) includes all the constant sequences. The best way
to analyze this situation is to develop some general methods for solving difference
equations. We do that next.

Binet formulas We mentioned earlier that there is a perfect analogy between linear
constant coefficient difference and differential equations. In the differential equation
case, a special role is played by the exponential functions, e*', which are eigenvectors
for the differential operator: De*’ = A - ¢*'. For difference equations, the analogous
role is played by the geometric progressions, A, = A". These are eigenvectors for the
left-shift operator: AA" = A - A". Both differential and difference equations can be for-
mulated in terms of polynomials in the fundamental operator, A or D, respectively.
These are in fact characteristic polynomials—the roots A are eigenvalues and corre-
spond to eigenvector solutions to the differential or difference equation. Moreover,
except in the case of repeated roots, this leads to a basis for the space of all solutions.

We can see how this all works in detail in the case of R(a, b), which is viewed as
the null space of p(A) = A?> —aA — b. When is the geometric progression A, = A"
in this null space? We demand that A, —aA,;; — bA, = 0, so the condition is

)\,"+2 _ a)“nJrI o b)»” —0.

Excluding the case A = 0, which produces only the trivial solution, this leads to

p(X) = 0 as a necessary and sufficient condition for 1" € R(a, b). Note also that the

roots of p are related to the coefficients in the usual way. Thus, if the roots are A and p,
then

At+upu=a (6)

A= —b. (7

Now if A and u are distinct, then A" and " are independent solutions to the dif-

ference equation. And since we already know that the null space is two dimensional,

that makes {A", "} a basis. In this case, R(a, b) is characterized as the set of linear

combinations of these two geometric progressions. In particular, for A € R(a, b), we
can express A in the form

A, =X +c, 1. (8)
The constants ¢, and ¢, are determined by the initial conditions

AO = + Cu
A| = C)L)\. + Cu L.
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We are assuming A and p are distinct, so this system has the solution

A — 1Ay
Cp=—————
A=
Ay — Ay
cy=—-.

Now let us apply these to the special cases of F and L. For F, the initial values are
Oand 1,s0¢, =1/(A — ) and ¢, = —1/(A — p). For L the initial terms are 2 and
a = A + p. This gives ¢, = ¢, = 1. Thus,

At — Mn
F, =

- 9)
L,=M\"+u" (10)

These are the Binet Formulas for R(a, b).

When A = p, the fundamental solutions of the difference equation are A, = A" and
B, = n)\". Most of the results for R(a, b) have natural extensions to this case. For
example, in the case of repeated root A, the Binet formulas become

F, =n\""!
L, =2\".

Extensions of this sort are generally quite tractable, and we will not typically go into
the details. Accordingly, we will assume from now on that p has distinct roots, or
equivalently, that a® + 4b # 0.

Another special case of interest occurs when one root is 1. In this case, the geometric
progression 1" is constant, and R (a, b) contains all the constant sequences. As we saw
earlier, the condition for this is @ + b = 1. Now the Binet representation gives a new
way of thinking about this result. It is an exercise to verify that a + » = 1 if and only
if 1 is a root of p.

If both roots equal 1, the fundamental solutions are A, = 1 and B,, = n. This shows
that R (2, —1) consists of all the arithmetic progressions, confirming our earlier obser-
vation for Example 2.

Let us revisit the other examples presented earlier, and consider the Binet formulas
for each.

Example 0: R(1, 1). For the normal Fibonacci and Lucas numbers, p(t) = t2—t—1,
and the roots are @ and B as defined earlier. The general version of the
Binet formulas reduce to the familiar form upon substitution of « and 8
for A and u.

Example 1: R(11, —10). Here, with p(t) = t*> — 11zt + 10, the roots are 10 and 1.
In this case the Binet formulas simply tell us what is already apparent:
F,=00"-1)/9and L, = 10" + 1.

Example 3: R(3, —2). In this example, p(t) = t2 — 3t + 2, with roots 2 and 1. The
Binet formulas confirm the pattern we saw earlier: F, =2" —land L, =
2" 4+ 1.

Example 4: R(1, —1). Now p(t) = t> —t + 1. Note that p(t)(t + 1) = ¢> + 1, s0 that
roots of p are cube roots of —1 and hence, sixth roots of 1. This explains
the periodic nature of F and L. Indeed, since A® = u® = 1 in this case,
every element of R(1, —1) has period 6 as well.
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Example 5: R(3, —1). The roots in this example are o and 82. The Binet formulas
involve only even powers of o and 8, hence the appearance of the even
Fibonacci and Lucas numbers.

Example 6: R (4, 1). This example is similar to the previous one, except that the roots
are o® and B°.

Example 7: R(2, 1). For this example p(t) = t*> — 2t — 1, so the roots are 1 & V2.
The Binet formulas give

_1+v2) ==V
- 2V2

Characterizing R(a, b) in terms of geometric progressions has immediate applica-
tions. For example, consider the ratio of successive terms of a sequence in R(a, b).
Using (8), we have

F, and L, =(1++v2)"+ (1 —+2)".

An+l _ C}\)"iﬂrl +C[L/“L”+]
A" - CAT + C;,L/"L" )
Now assume that |A| > |u|, and divide out A”":

An+l _ CA)\ + Cu“’(ﬂn/)‘”)

An B C + Cu. (/“L”/)\'")
Since (u/2)" will go to 0 as n goes to infinity, we conclude
An+l

— A as n — oo.

n
In words, the ratio of successive terms of a sequence in R(a, b) always tends toward
the dominant eigenvalue as n goes to infinity. That is the general version of the asymp-
totic behavior we observed for Fibonacci numbers.

As a second example, if A, = c,A" + ¢, 1", then A, = Ak c,mf”. This is a
linear combination of two geometric progressions as well, with eigenvalues A* and p*.
Consequently, 2, A € R(a’, b’) for some a’ and b’. Now using the relationship be-
tween roots and coefficients again, we deduce that a’ = AF + i, and by (10) that
gives @' = L“" . Similarly, we find b = —(hu)* = —(—b)*. Thus,

Q : R(a,b) — R(LL”, —(—b)"). (11)

We can extend this slightly. If A € R(a, b), then sois A¢A for any positive integer d.
Thus, Q;A9A € R(a’, b’). In other words, when A € R(a, b), the sequence B, =
Axnia 18 in R(a’, b’). This corresponds to sampling A at the terms of an arithmetic
progression.

In the particular case of F and L, we can use the preceding results to determine the
effect of €, explicitly. For notational simplicity, we will again denote by a’ and b’ the
values L” and —(—b)*, respectively. We know that 2, F@? € R(a’, b’), and begins
with the terms O and F, k("'b) . This is necessarily a multiple of F@"*" and in particular,
gives

QkF(u'b) — Fk(a,b) . F(a”b/)' (12)

Similarly, €2, L@" begins with 2 and L{*”. But remember that the latter of these is
exactly a’' = L(,“/’b’). Thus,

QLY = L@, (13)
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Of course, this last equation is easily deduced directly from the Binet formula for
L@P | as well. The observations in Examples 5 and 6 are easily verified using (12)
and (13).

For one more example, let us return to the analysis of X A for A € R(a, b). Again
using the expression A, = ¢, A" + ¢, u" we find the terms of £ A as

)\n+1_1 Mn+]_1
YA, = .
s T

Evidently, this is invalid if either A or u equals 1. So, as before, we exclude that possi-
bility by assuming a + b # 1.

Under this assumption, we found earlier that ¥ A must differ from an element of
R(a, b) by a constant. Now we can easily determine the value of that constant. Re-
arranging the preceding equation produces

OA L, Cult Cx Cu
A, = 2% g Gl e .
Ao Tt (A—1+u—1)

This clearly reveals X A as the sum of an element of R(a, b) with the constant C =
—(e2/ 0= 1) + /(= D).

In general, the use of this formula requires expressing A in terms of A and p. But
in the special case of F, we can express the formula in terms of a and b. Recall that
when A = F, ¢, =1/(A — ) and ¢, = —1/(A — p). Substituting these in the earlier
formula for C, leads to

C— 1 1 1
Cooa—pu\A—-1 pu-1

_ 1 nw—Ar _ 1
T oA—pG=D-1)  Qu—-Ar-p+1

Once again using (6) and (7), this yields

1

C=——.
l—a-0»

(14)

As an example, let us consider X F for R(2, 3). In the table below, the first several
terms of F and X F are listed.

n 01 2 3 4 5
F, 01 2 7 20 6l
XF, 0 1 3 10 30 91

In this example, we have C = 1/(1 —2 —3) = —1/4. Accordingly, adding 1/4
to each term of X F should produce an element of R (2, 3). Carrying out this step
produces

11
SF + = ;(1,5.13,41, 121,365, ).

As expected, this is an element of R (2, 3).
Applying a similar analysis in the general case (with the assumption a + b # 1)
leads to the identity
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_ 1
T a+b-1

2:Fn (Fn+1+bFn_1)-

This reduces to the running sum property for Fibonacci numbers when a = b = 1. A
similar analysis applies in the case a + b = 1. We leave the details to the reader.

In the derivation of the Binet formulas above, a key role was played by the eigen-
vectors and eigenvalues of the shift operator. It is therefore not surprising that there is
a natural matrix formulation of these ideas. That topic is the third general context for
tool development.

Matrix formulation Using the natural basis {E, F'} for R(a, b), we can represent
A by a matrix M. We already have seen that AE = bF, so the first column of M has
entries 0 and b. Applying the shift to F produces (1, a, ...) = E + aF. This identifies
the second column entries of M as 1 and a, so

01
Mz[ba} (15)

Now if A € R(a, b), then relative to the natural basis it is represented by [A] =
[Ay A,]17. Similarly, the basis representation of A"A is [A, A,.;]7. On the other
hand, we can find the same result by applying M n times to [A]. Thus, we obtain

0o 17T A A,
el

Premultiplying by [1 0] then gives

[ 1 0][2 ;:||:2?}=A,,. (17)

This gives a matrix representation for A,,.

Note that in general, the ith column of a matrix M can be expressed as the prod-
uct Me;, where e; is the ith standard basis element. But here, the standard basis
elements are representations [E] and [F]. In particular, M"[E] = [E, E,.]” and
M"[F] = [F, F,,]". This gives us the columns of M", and therefore

E F,
Mil — n n .
l: En+1 Fn+l ]

Then, using AE = bF, we have
0 1 ! _ bEl—l El
|:b a] _{ bFn Fﬂ+1]- (18)
This is the general version of the matrix form for Fibonacci numbers.

The matrix form leads immediately to two other properties. First, taking the deter-
minant of both sides of (18), we obtain

bFn—an-H - bF,lz = (—b)".
Simplifying,
FooiFopr — Fl = (=1)"b""",

the general version of Cassini’s formula.
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Second, start with M" = M™M"™™, expressed explicitly in the form
bFn—l Fn _ me—l Fm bFn—m—l Fn—m
bFn Fn+l - me Fm+l bFn—m Fn—m+l '

By inspection, we read off the 1, 2 entry of both sides, obtaining

F, = Fan—m+l +me—1Fn—mv (19)

generalizing the Convolution Property for regular Fibonacci numbers. As a special
case, replace n with 2n + 1 and m with n 4 1, producing

Fo41 = F2,, + bF?. (20)

This equation will be applied in the discussion of Pythagorean triples.

This concludes our development of general tools. Along the way, we have found
natural extensions of all but two of our famous Fibonacci properties. These extensions
are all simple and direct consequences of the basic ideas in three general contexts:
difference operators, Binet formulas, and matrix methods. Establishing analogs for the
remaining two properties is just a bit more involved, and we focus on them in the next
section.

The last two properties

Pythagorean triples In a way, the connection with Pythagorean triples is triv-
ial. The well-known parameterization (x?> — y2, 2xy, x> + y?) expresses primitive
Pythagorean triples in terms of quadratic polynomials in two variables. The construc-
tion using Fibonacci numbers is similar. To make this clearer, note that if w, x, y, z
are four consecutive Fibonacci numbers, then we may replace w with y — x and z
with y 4+ x. With these substitutions, the Fibonacci parameterization given earlier for
Pythagorean triples becomes

(wz,2xy, yz — wx) = ((y = X)(y + x), 2yx, y(y + x) — x(y — x)).

Since we can reduce the parameterization to a quadratic combination of two parame-
ters in this way, the ability to express Pythagorean triples loses something of its mys-
tery. In fact, if w, x, y, z are four consecutive terms of any sequence in R(a, b), we
may regard x and y as essentially arbitrary, and so use them to define a Pythagorean
triple (x> — y?, 2xy, x> + y?). Thus, we can construct a Pythagorean triple using just
two consecutive terms of a Fibonacci-like sequence.

Is that cheating? It depends on what combinations of the sequence elements
are considered legitimate. The Fibonacci numbers have been used to parameter-
ize Pythagorean triples in a variety of forms. The version given above, (wz, 2xy,
¥z — wx), appears in Koshy [16] with a 1968 attribution to Umansky and Tallman.
Here and below we use consecutive letters of the alphabet rather than the original
subscript formulation, as a notational convenience. Much earlier, Raine [19] gave it
this way: (wz, 2xy, t), where, if w is F, then ¢ is F5, 3. Boulger [1] extended Raine’s
results and observed that the triple can also be expressed (wz,2xy, x> + y2). Ho-
radam [13] reported it in the form (xw, 2yz, 2yz + x2). These combinations use a
variety of different quadratic monomials, including both yz and x?2. So, if those are
permitted, why not simply use the classical (x? — y%,2xy, x* + ¥?) and be done with
it? The more complicated parameterizations we have cited then seem to be merely
exercises in complexification.
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In light of these remarks, it should be no surprise that the Fibonacci param-
eterization of Pythagorean triples can be generalized to R(a, b). For example,
Shannon and Horadam [20] give the following version: ((a/b?)xw,2Pz(Pz — x),
x2 4+ 2Pz(Pz — x)) where P = (a* — —b)/2b>.

Using a modified version of the diophantine equation, we can get closer to the
simplicity of Raine’s formulation. For R(a, b) we replace the Pythagorean identity
with

X*+by? = 27" (1)
and observe that the parameterization
(X,Y,72) = (v? — bu?, 2uv, v* + buz)

always produces solutions to (21). Now, if w, x, y, and z are four consecutive terms of
A € RA(a, b), then we can express the first and last as

1
w = E(y —ax)
z=>bx +ay.
Define constants ¢ = b/a and d = ¢ — a. Then a calculation verifies that
(X,Y,Z) = (cwz —dxy,2xy, xz+ bwy) (22)

is a solution to (21). In fact, with u = x and v = y, it is exactly the parameterization
given above.
In the special case that x = F“" we canalso express (22) in the form

(X,Y,Z) = (cwz —dxy,2xy,t)

where t = F,, . This version, which generalizes the Raine result, follows from (20).
Note, also, that when a = b = 1, (22) becomes (wz, 2xy, xz + wy), which is another
variant on the Fibonacci parameterization of Pythagorean triples.

Greatest common divisor The Fibonacci properties considered so far make sense
for real sequences in R(a, b). Now, however, we will consider divisibility properties
that apply to integer sequences. Accordingly, we henceforth assume that @ and b are
integers, and restrict our attention to sequences A € R(a, b) for which the initial terms
Ao and A, are integers, as well. Evidently, this implies A is an integer sequence. In
order to generalize the gcd property, we must make one additional assumption: that
a and b are relatively prime. Then we can prove in R(a, b), that the ged of F,, and
F, is F;, where k is the gcd of m and n. The proof has two parts: We show that Fj
is a divisor of both F, and F,, and that F,,/F, and F,/F; are relatively prime. The
first of these follows immediately from an observation about the skip operator already
presented. The second part depends on several additional observations.

OBSERVATION 1. F, is a divisor of F foralln > 0.

Proof. We have already noted that Q, F = Fy - F@?) 50 every element of Q, F =
F(), Fk, sz, ey is divisible by Fk.

OBSERVATION 2. F, and b are relatively prime for all n > 0.

Proof. Suppose p is prime divisor of b. Since a and b are relatively prime, p is not

a divisor of a. Modulo p, the fundamental recursion (1) becomes F,,, = aF,,, so
F, = Fia"' forn > 1. This shows that F, # 0, since p is not a divisor of a.
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OBSERVATION 3. If A € R(a, b), and if p is a common prime divisor of A; and
Ay, but is not a divisor of b, then p is a divisor of A,, for alln > 0.

Proof. If k > 0, Ayyy = aAy + bA;_y, so p is a divisor of A;_;. By induction, p
divides both Ag and A, and therefore A,, for all n > 0.

OBSERVATION 4. If positive integers h and k are relatively prime, then so are F
and F,.

Proof. If p is a prime divisor of Fj, and F;, then by Observation 2, p is not a
divisor of b. Since h and k are relatively prime, there exist integers r and s such that
rh 4+ sk = 1. Clearly r and s must differ in sign. Without loss of generality, we assume
that r < 0, and define t = —r. Thus, sk —th = 1. Now by Observation 1, Fy is
divisible by Fj, and hence by p. Similarly, F;; is divisible by Fj, and hence, also by
p. But F,; and Fy; are consecutive terms of F, so by Observation 3, p is a divisor of
all F,. That is a contradiction, and shows that F,, and F; can have no common prime
divisor.

OBSERVATION 5. If @' = L™ and b’ = —(—b)%, then d and b’ are relatively
prime.

Proof. Suppose, to the contrary, that p is a common prime divisor of @’ and . Then

clearly p is a divisor of b, and also a divisor of Ly""”, which equals bF“" + F

by (5). This makes p a divisor of Fk(i’]b ) , which contradicts Observation 2.

With these observations, we now can prove the
THEOREM. The gcd of F,, and F, is F,, where k is the gcd of m and n.

Proof. Lets = m/k and t = n/k, and observe that s and ¢ are relatively prime. We
consider A = Q F = Fy, Fy, Fy, .. .. As discussed earlier, A can also be expressed as
Fy - F9") where a’ = Ly and b’ = —(—b)*. Moreover, by Observation 5, @’ and b’ are
relatively prime. As in Observation 1, we see at once that every A; is a multiple of Fy,
so in particular, Fj is a divisor of A; = Fy; = F,, and A, = Fy;, = F,. On the other
hand, F,,/F, = F“*) and F,/F, = F“"“®)_ are relatively prime by Observation 4.
Thus, Fy is the gcd of F,, and F,. [ ]

Several remarks about this result are in order. First, in Michael [18], the correspond-
ing result is established for the traditional Fibonacci numbers. That proof depends on
the R (1, 1) instances of (19), Observation 1, and Observation 3, and extends to a proof
for R(a, b) in a natural way.

Second, Holzsager [10] has described an easy construction of other sequences A,
for which gcd(A,, An) = Agedon,n- First, for the primes p, define A, = g, where
the g, are relatively prime. Then, extend A to the rest of the integers multiplicatively.
That is, if n = [] p;{ then A, = []g,". Such a sequence defines a mapping on the pos-
itive integers that carries the prime factorization of any subscript into a correspond-
ing factorization involving the gs. This mapping apparently will commute with the
gcd. By Observation 4, the terms F ,‘,‘:’b) are relatively prime, but since F, = a and
F; = a® 4 2ab, the F mapping is not generally multiplicative. Thus, Holzsager’s con-
struction does not lead to examples of the form F @5,

Finally, we note that there is similar result for the (a, b)-Lucas numbers, which we
omit in the interest of brevity. Both that result and the preceding Theorem also appear
in Hilton and Pedersen [8]. Also, the general gcd result for F was known to Lucas,
and we may conjecture that he knew the result for L as well.
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In particular and in general

We have tried to show in this paper that much of the mystique of the Fibonacci numbers
is misplaced. Rather than viewing F as a unique sequence with an amazing host of
algebraic, combinatorial, and number theoretic properties, we ought to recognize that
it is simply one example of a large class of sequences with such properties. In so
arguing, we have implicitly highlighted the tension within mathematics between the
particular and the general. Both have their attractions and pitfalls. On the one hand,
by focusing too narrowly on a specific amazing example, we may lose sight of more
general principles at work. But there is a countervailing risk that generalization may
add nothing new to our understanding, and result in meaningless abstraction.

In the case at hand, the role of the skip operator should be emphasized. The proof of
the ged result, in particular, was simplified by the observation that the skip maps one
R(a, b) to another. This observation offers a new, simple insight about the terms of
Fibonacci sequences—an insight impossible to formulate without adopting the general
framework of two-term recurrences.

It is not our goal here to malign the Fibonacci numbers. They constitute a fasci-
nating example, rich with opportunities for discovery and exploration. But how much
more fascinating it is that an entire world of such sequences exists. This world of the
super sequences should not be overlooked.
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In the previous article, Kalman and Mena [5] propose that Fibonacci and Lucas se-
quences, despite the mathematical favoritism shown them for their abundant patterns,
are nothing more than ordinary members of a class of super sequences. Their ar-
guments are beautiful and convinced us to present the same material from a more
discrete perspective. Indeed, we will present a simple combinatorial context encom-
passing nearly all of the properties discussed in [S].

As in the Kalman-Mena article, we generalize Fibonacci and Lucas numbers: Given
nonnegative integers a and b, the generalized Fibonacci sequence is

Fo=0, F =1, andforn>2, F,=aF,_+bF,. (€))
The generalized Lucas sequence is
Ly=2, Ly,=a, andforn>2, L,=alL,_|+bL,_,.

When a = b = 1, these are the celebrity Fibonacci and Lucas sequences. For now, we
will assume that @ and b are nonnegative integers. But at the end of the article, we will
see how our methods can be extended to noninteger values of a and b.

Kalman and Mena prove the following generalized Fibonacci identities

Fn = Fan—m+1+me—IFn—m (2)
(@+b—1)) F=Fu +bF, —1 3)

i=1
a(b"F§+b""'Fl+ -+ bF,_| + F;) = F.Fupy 4)
Fo By — Fp = (=1)"p"" )
ng(Fn, Fm) = Fgcd(n.m) (6)
L,=aF, +2bF,_, @)
Ln=Fn+1+bFn—l (8)

using the tool of difference operators acting on the real vector space of real sequences.
In this paper, we offer a purely combinatorial approach to achieve the same results. We
hope that examining these identities from different perspectives, the reader can more
fully appreciate the unity of mathematics.

*Editor’s Note: Readers interested in clever counting arguments will enjoy reading the authors’ upcoming
book, Proofs That Really Count: The Art of Combinatorial Proof, published by the MAA.
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Fibonacci numbers—The combinatorial way

There are many combinatorial interpretations for Fibonacci and Lucas numbers [3].
We choose to generalize the “square and domino tiling” interpretation here. We show
that the classic Fibonacci and Lucas identities naturally generalize to the (a, b) recur-
rences simply by adding a splash of color.

For nonnegative integers a, b, and n, let f, count the number of ways to tile a
1 x n board with 1 x 1 colored squares and 1 x 2 colored dominoes, where there are
a color choices for squares and b color choices for dominoes. We call these objects
colored n-tilings. For example, f; = a since a length 1 board must be covered by a
colored square; f; = a@* + b since a board of length 2 can be covered with two colored
squares or one colored domino. Similarly, f3 = a® 4 2ab since a board of length 3
can be covered by 3 colored squares or a colored square and a colored domino in one
of 2 orders. We let fy = 1 count the empty board. Then for n > 2, f, satisfies the
generalized Fibonacci recurrence

fn = afnfl + bfn—2s

since a board of length n either ends in a colored square preceded by a colored (n — 1)-
tiling (tiled in af,—; ways) or a colored domino preceded by a colored (n — 2)-tiling
(tiled in bf,, , ways.) Since fy =1 = F| and f, = a = F,, we see thatforall n > 0,
fu = Fu11. After defining f | = 0, we now have a combinatorial definition for the
generalized Fibonacci numbers.

THEOREM |. Forn >0, F, = f,_, counts the number of colored (n — 1)-tilings
(of a 1 x (n — 1) board) with squares and dominoes where there are a colors for
squares and b colors for dominoes.

Using Theorem 1, equations (2) through (6) can be derived and appreciated com-
binatorially. In most of these, our combinatorial proof will simply ask a question and
answer it two different ways.

For instance, if we apply Theorem 1 to equation (2) and reindex by replacing n by
n+ 1 and m by m + 1, we obtain

IDENTITY 1. ForO0 <m < n,
fn = fmfn—m + bﬁn~1fn7m—l'

Question: How many ways can a board of length n be tiled with colored squares
and dominoes?

Answer 1: By Theorem 1, there are f, colored n-tilings.

Answer 2: Here we count how many colored n-tilings are breakable at the
m-th cell and how many are not. To be breakable, our tiling consists of a colored
m-tiling followed by a colored (n — m)-tiling, and there are f,, f,—. such tilings.
To be unbreakable at the m-th cell, our tiling consists of a colored (m — 1)-
tiling followed by a colored domino on cells m and m + 1, followed by a col-
ored (n — m — 1)-tiling; there are bf,, _; f,—»_1 such tilings. Altogether, there are
SnSrnem + bfm_1 fu_m—1 colored n-tilings.

Since our logic was impeccable for both answers, they must be the same. The ad-
vantage of this proof is that it makes the identity memorable and visualizable. See
FIGURE 1 for an illustration of the last proof.
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n-tilings breakable at cell m:

1 2 m-l m_ mtl mt2

m n-m

n-tilings unbreakable at cell m:

T 2 ml m 2 "

fm-l fr‘l-m-l

Figure 1 A colored n-tiling is either breakable or unbreakable at cell m

Equation (3) can be rewritten as the following identity.

IDENTITY 2. Forn > 0,

fi—l=@-Dfisi+@+b-=D[fo+ fi+ -+ fuz2l

Question: How many colored n-tilings exist, excluding the tiling consisting of
all white squares?

Answer 1: By definition, f, — 1. (Notice how our question and answer be-
come shorter with experience!)

Answer 2: Here we partition our tilings according to the last tile that is not
a white square. Suppose the last tile that is not a white square begins on cell k.
If k = n, that tile is a square and there are a — 1 choices for its color. There are
Jfn_1 colored tilings that can precede it for a total of (@ — 1) f,_, tilings ending in
a nonwhite square. If 1 < k < n — 1, the tile covering cell k can be a nonwhite
square or a domino covering cells k and k + 1. There are a + b — 1 ways to
pick this tile and the previous cells can be tiled f;_; ways. Altogether, there are

(a—1Dfu1 + Zz;f(a + b — 1) fr—1 colored n-tilings, as desired.

Notice how easily the argument generalizes if we partition according to the last tile
that is not a square of color 1 or 2 or... or c. Then the same reasoning gives us for any
1 <c¢<a,

fom" =@ =) for+ ((@=c+b)foc" 2+ i >+ 4 fual. (9

Likewise, by partitioning according to the last tile that is not a black domino, we
get a slightly different identity, depending on whether the length of the tiling is odd or
even:

S =alfo+ o+ + fa)+ G =D(fi+ fi+-+ fau1),
S —l=a(fi+ fi+ -+ fa) + G =D(fo+ o+ + fau2)
After applying Theorem 1 to equation (4) and reindexing (n — n + 1) we have

IDENTITY 3. Forn > 0,

a Z-szbn_k = fnfn+l-
k=0
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Question: In how many ways can we create a colored n-tiling and a colored
(n + 1)-tiling?

Answer 1: 1, f41.

Answer 2: For this answer, we ask for 0 < k < n, how many colored tiling
pairs exist where cell k is the last cell for which both tilings are breakable?
(Equivalently, this counts the tiling pairs where the last square occurs on cell
k + 1 in exactly one tiling.) We claim this can be done af?b"~* ways, since
to construct such a tiling pair, cells 1 through & of the tiling pair can be tiled
f2 ways, the colored square on cell k + 1 can be chosen a ways (it is in the
n-tiling if and only if n — & is odd), and the remaining 2n — 2k cells are covered
with n — k colored dominoes in "% ways. See FIGURE 2. Altogether, there are
ay j_, fib"* tilings, as desired.

1 2 n on-l

7 "

Figure 2 A tiling pair where the last mutually breakable cell occurs at cell k

The next identity uses a slightly different strategy. We hope that the reader does not
Jind fault with our argument.

Consider the two colored 10-tilings offset as in FIGURE 3. The first one tiles cells
| through 10; the second one tiles cells 2 through 1. We say that there is a fault at
cell i, 2 < i < 10, if both tilings are breakable at cell i. We say there is a faultat cell |
if the first tiling is breakable at cell 1. Put another way, the pair of tilings has a fault at
cell i for 1 <i < 10 if neither tiling has a domino covering cells i and i 4 1. The pair
of tilings in FIGURE 3 has faults at cells 1, 2, 5, and 7. We define the tuil of a tiling to
be the tiles that occur after the last fault. Observe that if we swap the tails of FIGURE
3 we obtain the 11-tiling and the 9-tiling in FIGURE 4 and it has the same faults.

Figure 4  After tail-swapping, we have an 11-tiling and a 9-tiling with exactly the same
faults
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Tail swapping is the basis for the identity below, based on (5). At first glance, it
may appear unsuitable for combinatorial proof due to the presence of the (—1)”" term.
Nonetheless, we will see that this term is merely the error term of an almost one-to-one
correspondence between two sets whose sizes are easily counted. We use a different
format for this combinatorial proof.

IDENTITY 4. f? = fu1fa1 +(=1)"D"

Set 1: Tilings of two colored r-boards (a top board and a bottom board). By
definition, this set has size f?.

Set 2: Tilings of a colored (n + 1)-board and a colored (n — 1)-board. This
set has size foi1fu_1-

Correspondence: First, suppose n is odd. Then the top and bottom board
must each have at least one square. Notice that a square in cell i ensures that a
fault must occur at cell i or cell i — 1. Swapping the tails of the two n-tilings
produces an (n + 1)-tiling and an (n — 1)-tiling with the same tails. This pro-
duces a 1-to-1 correspondence between all pairs of n-tilings and all tiling pairs
of sizes n + 1 and n — 1 that have faults. Is it possible for a tiling pair with
sizes n + 1 and n — 1 to be fault free? Yes, with all colored dominoes in stag-
gered formation as in FIGURE 5, which can occur " ways. Thus, when # is odd,
fnz = fn+1fn—l -b".

Similarly, when n is even, tail swapping creates a 1-to-1 correspondence be-
tween faulty tiling pairs. The only fault-free tiling pair is the all domino tiling
of FIGURE 6. Hence, f* = f,4if,—1 + b". Considering the odd and even case
together produces our identity.

1 2 3 4 5 6 7 8 9 10 11

Figure 6 When n is even, the only fault-free tiling pairs consist of all dominoes

We conclude this section with a combinatorial proof of what we believe to be the
most beautiful Fibonacci fact of all.

THEOREM 2. For generalized Fibonacci numbers defined by (1) with relatively
prime integers a and b,

ng(Fn» Fm) = Fgcd(n,m)- (10)
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We will need to work a little harder to prove this theorem combinatorially, but it can
be done. Fortuitously, we have already combinatorially derived the identities needed
to prove the following lemma.

LEMMA 1. For generalized Fibonacci numbers defined by (1) with relatively prime
integers a and b and for allm > 1, F,, and bF,,_, are relatively prime.

Proof. First we claim that F,, is relatively prime to b. By conditioning on the loca-
tion of the last colored domino (if any exist), equation (9) says (after letting ¢ = a and
reindexing),

m—2
Fm = am_[ + b Za-"] Fm—l—j-

=
Consequently, if d > 1 is a divisor of F,, and b, then d must also divide a™ !, which
is impossible since a and b are relatively prime.

Next we claim that F,, and F,,_, arerelatively prime. This follows from equation (5)
since if d > 1 divides F,, and F,,_;, then d must divide »™~'. But this is impossible
since F),, and b are relatively prime.

Thus since ged(F,,, b) = 1 and ged(F,,, Fn_) = 1, then gcd(F,,,bF,,_) = 1, as
desired. [ |

To prove Theorem 2, we exploit Euclid’s algorithm for computing greatest common
divisors: If n = gm + r where 0 < r < m, then

ged(n, m) = ged(m, r).

Since the second component gets smaller at each iteration, the algorithm eventually
reaches ged(g, 0) = g, where g is the greatest common divisor of n and m. The identity
below shows one way that F, can be expressed in terms of F,, and F,. It may look
formidable at first but makes perfect sense when viewed combinatorially.

IDENTITY 5. Ifn = gm + r, where 0 < r < m, then

q
Fyo=(bF, )"F. + F, Y (bFu )’ Fiqjymirir-
j=l

Question: How many colored (gm + r — 1)-tilings exist?

Answer 1: f 1,1 = Fypir = F,.

Answer 2: First we count all such colored tilings that are unbreakable at ev-
ery cell of the form jm — 1, where 1 < j < ¢. Such a tiling must have a col-
ored domino starting on cell m — 1,2m — 1, ...,gm — 1, which can be cho-
sen b? ways. Before each of these dominoes is an arbitrary (m — 2)-tiling that
can each be chosen f,,_, ways. Finally, cells gm +1,gm +2,...,.gm +r — 1
can be tiled f,_; ways. See FIGURE 7. Consequently, the number of colored

gm-1 gmtr-1

J{m»Z Jm2ooc fm-! ];,1

Figure 7 There are (bFy_1)9F, colored (gm + r — 1)-tilings with no breaks at any cells
oftheform jm—1 where1 <j <gq
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tilings with no jm — 1 breaks is b?(fi—2)? fr—1 = (bF,n—1)? F,. Next, we par-
tition the remaining colored tilings according to the first breakable cell of the
form jm — 1, 1 < j < g. By similar reasoning as before, this can be done
(bF,_)'"'F, F4— jym+r+1 Ways. (See FIGURE 8.) Altogether, the number of col-
ored tilings is (b F,—1)?F, + F, Z’jzl(me_l)f‘lF(q_j)m+,+1.

(-Dm-1 fm-1 qlqu-l
| T 1 d
[ — W -
2 R A S Kgpmer

Figure 8 There are (bFy_1 y=1 FnFig-jym+r+1 colored (gm + r — 1)-tilings that are break-
able at cell jm — 1, but not at cells of the form im — 1 where 1 < i < j

The previous identity explicitly shows that F, is an integer combination of F,
and F,. Consequently, d is a common divisor of F, and F,, if and only if d divides
F, and (bF,,_1)?F,. But by Lemma 1, since F,, is relatively prime to bF,,_;, d must
be a common divisor of F,, and F,. Thus F, and F,, have the same common divisors
(and hence the same gcd) as F;, and F,. In other words,

COROLLARY 1. Ifn =qgm +r, where 0 <r < m, then
ng(an Fm) = ng(Fma Fr)

But wait!! This corollary is the same as Euclid’s algorithm, but with F’s inserted
everywhere. This proves Theorem 2 by following the same steps as Euclid’s algorithm.
The gcd(F,, F,,) will eventually reduce to gcd(F,, Fy) = (F,, 0) = F,, where g is the
greatest common divisor of m and n.

Lucas numbers—the combinatorial way

Generalized Lucas numbers are nothing more than generalized Fibonacci numbers
running in circles. Specifically, for nonnegative integers a, b, and n, let £, count the
number of ways to tile a circular 1 x n board with slightly curved colored squares and
dominoes, where there are a colors for squares and b colors for dominoes. Circular
tilings of length n will be called n-bracelets. For example, whena = b =1,44 =7,
as illustrated in FIGURE 9. In general, £4 = a* + 4a®b + 2b°.

A
@’

Figure 9 A circular board of length 4 and its seven 4-bracelets

From the definition of ¢, it follows that £, > f, since an n-bracelet can have a
domino covering cells #n and 1; such a bracelet is called out-of-phase. Otherwise,
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there is a break between cells n and 1, and the bracelet is called in-phase. The first 5
bracelets in FIGURE 9 are in-phase and the last 2 are out-of-phase. Notice £, = a and
¢, = a* + 2b since a circular board of length 2 can be covered with two squares,
an in-phase domino, or an out-of-phase domino. We define ¢, = 2 to allow 2 empty
bracelets, one in-phase and one out-of-phase. In general for n > 2, we have

Ly=al,_ +bt,

because an n-bracelet can be created from an (n — 1)-bracelet by inserting a square to
the left of the first tile or from an (n — 2)-bracelet by inserting a domino to the left of
the first tile. The first tile is the one covering cell 1 and it determines the phase of the
bracelet; it may be a square, a domino covering cells 1 and 2, or a domino covering
cellsn and 1.

Since g =2 =Ly and £, =a = L,, we see that for all n > 0, £, = L,. This
becomes our combinatorial definition for the generalized Lucas numbers.

THEOREM 3. Foralln > 0, L, = £, countsthe number of n-bracelets created with
colored squares and dominoes where there are a colors for squares and b colors for
dominoes.

Now that we know how to combinatorially think of Lucas numbers, generalized
identities are a piece of cake. Equation (7), which we rewrite as

Ln = a.fnfl + 2bﬁ1—2’

reflects the fact that an n-bracelet can begin with a square (af,_; ways), an in-phase
domino (bf,_, ways), or an out-of-phase domino (bf,_, ways). Likewise, equation (8),
rewritten as

Ln = fn + bﬁl*Zv

conditions on whether or not an n-bracelet is in-phase ( f,, ways) or out-of-phase (bf,_»
ways.)

You might even think these identities are too easy, so we include a couple more
generalized Lucas identities for you to ponder along with visual hints. For more details
see [4].

fn—an = on—] See FIGURE 10.
L =Ly +2-(=b)" See FIGURE 11.

Further generalizations and applications

Up until now, all of our proofs have depended on the fact that the recurrence coef-
ficients a and b were nonnegative integers, even though most generalized Fibonacci
identities remaintrue when a and b are negative or irrational or even complex numbers.
Additionally, our sequences have had very specific initial conditions (Fy = 0, F; =1,
Ly =2, L, = a), yet many identities can be extended to handle arbitrary ones. This
section illustrates how combinatorial arguments can still be used to overcome these
apparent obstacles.

Arbitrary initial conditions Leta, b, Ay, and A; be nonnegative integers and con-
sider the sequence A, defined by the recurrence, forn > 2, A, =aA,_| + bA, ». As
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Case |: breakable at n

n ]_‘t

n+| s 2p-

Case II: not breakable at n

nntl e o0 2p-]
n n+1

2n-1, t
1 e n-1

Figure 10 Picture for f,_1L, = Hrn-1

Figure 11 Picture for L2 = L, + 2 - (—b)" when n is even
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described in [1] and Chapter 3 of [4], the initial conditions Ay and A, determine the
number of choices for the initial tile. Just like F,, A, counts the number of colored
n-tilings where except for the first tile there are a colors for squares and b colors for
dominoes. For the first tile, we allow A; choices for a square and bA, choices for a
domino. So as not to be confused with the situation using ideal initial conditions, we
assign the first tile a phase instead of a color.

For example, when Ay = 1 and A, = a, the ideal initial conditions, we have a
choices for the phase of an initial square and b choices for the phase of an initial
domino. Since all squares have a choices and all dominoes have b choices, it follows
that A, = f,. When Ag = 0 and A, = 1, A, counts the number of colored n-tilings
that begin with an “uncolored” square; hence A, = f,_, = F,. When A, = 2 and
A, = a, A, counts the number of colored n-tilings that begin with a square in one of
a phases or a domino in one of 2b phases. This is equivalent to a colored n-bracelet
since there are an equal number of square phases as colors and twice as many domino
phases as colors (representing whether the initial domino is in-phase or out-of-phase.)
Thus when Ag =2 and A; =a, wehave A, = L,,.

In general, there are A, f,_; colored tilings that begin with a phased square and
bAgf,_» colored tilings that being with a phased domino. Hence we obtain the follow-
ing identity from Kalman and Mena [5]:

A, = bAoF,_, + AF,. (11)

Arbitrary recurrence coefficients Rather than assigning a discrete number of col-
ors for each tile, we can assign weights. Squares have weight a and dominoes have
weight b except for the initial tile, which has weight A, as a square and weight bA
as a domino. Here a, b, Ay, and A do not have to be nonnegative integers, but can be
chosen from the set of complex numbers (or from any commutative ring). We define
the weight of an n-tiling to be the product of the weights of its individual tiles. For ex-
ample, the 7-tiling “square-domino-domino-square-square” has weight a®b? with ideal
initial conditions and has weight A;a?b? with arbitrary initial conditions. Inductively
one can prove that for n > 1, A, is the sum of the weights of all weighted n-tilings,
which we call the total weight of an n-board.

If X is an m-tiling of weight wy and Y is an n-tiling of weight wy, then X and
Y can be glued together to create an (m + n)-tiling of weight wxwy. If an m-board
can be tiled s different ways and has total weight A,, = w; + w; + -+ - 4+ w, and an
n-board can be tiled ¢ ways with total weight A, = x; + x, + - - - + x;, then the sum
of the weights of all weighted (m + n)-tilings breakable at cell m is

s t
YOY wixg =it wa W)X X+ X)) = Ap Ay
1

i=1 j=

Now we are prepared to revisit some of our previous identities using the weighted
approach. For Identity 1, we find the total weights of an n-board in two different ways.
On the one hand, since the initial conditions are ideal, the total weightis A, = f,. On
the other hand, the total weight is comprised of the total weight of those tilings that are
breakable at cell m (f,, f,—) plus the total weight of those tilings that are unbreakable
atcell m (fu_1bfn_n—1). Identities 2, 3, and 5 can be argued in similar fashion.

For Identity 4, we define the weight of a tiling pair to be the product of the weights
of all the tiles, and define the total weight as before. Next we observe that tail swapping
preserves the weight of the tiling pair since no tiles are created or destroyed in the
process. Consequently, the total weight of the set of faulty tiling pairs (X, Y) where
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X and Y are n-tilings equals the total weight of the faulty tiling pairs (X', Y’), where
X' is an (n 4 1)-tiling and Y’ is an (n — 1)-tiling. The fault-free tiling pair, for the
even and odd case, will consist of # dominoes and therefore have weight »". Hence
identity 4 remains true even when a and b are complex numbers.

Kalman and Mena [S] prove Binet’s formulas for Fibonacci numbers

Fn:_l_ 1+v5\  (1-45 ’ 12)
5 2 2

and for more general sequences.

These can also be proved combinatorially [2]. Binet’s formula follows from consid-
ering a random tiling of an infinitely long strip with cells 1, 2, 3, ..., where squares
and dominoes are randomly and independently inserted from left to right. The prob-
ability of inserting a square is 1/¢ and the probability of inserting a domino is 1/¢?,
where ¢ = (1 + +/5)/2. (Conveniently, 1/¢ 4+ 1/¢> = 1.) By computing the proba-
bility of being breakable at cell » — 1 in two different ways, Binet’s formula instantly
appears. This approach can be extended to generalized Fibonacci numbers and beyond,
as described in [1].

Finally, we observe that the Pythagorean Identity presented in [S] for traditional
Fibonacci numbers, which can be written as

(fnflfn+2)2 + (2fnfn+l)2 = f22n+2

can also be proved combinatorially. For details, see [4].

We hope that this paper illustrates that Fibonacci and Lucas sequences are members
of a very special class of sequences satisfying beautiful properties, namely sequences
defined by second order recurrence relations. But why stop there? Combinatorial in-
terpretations can be given to sequences that satisfy higher-order recurrences. That is,
if we definea; = 0for j <O0anday = 1, thenforn > 1, a, = c1a,—1 + - - + Cran_i
counts the number of ways to tile a board of length n with colored tiles of length at
most k, where each tile of length i has ¢; choices of color. Again, this interpretation can
be extended to handle complex values of ¢; and arbitrary initial conditions. See Chap-
ter 3 of [4]. Of course, the identities tend to be prettier for the two-term recurrences,
and are usually prettiest for the traditional Fibonacci and Lucas numbers.

n
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Gaspard Monge and the Monge Point
of the Tetrahedron

ROBERT ALAN CRABBS
P. O. Box 509
Loughman, FL 33858-0509

Monge and his contributions to mathematics

Gaspard Monge (1746-1818) was a man of extraordinary talent. Despite humble ori-
gins, he founded one new branch of mathematics, made major early contributions to a
second, and became a close friend of Napoleon Bonaparte (1769-1821).

Monge was born on May 9 or 10, 1746, in Beaune, France [15, p. 9]. His father,
a peddler and later a storekeeper, valued education and saw to the education of his
three sons. By age 14, Monge made his exceptional ability evident by independently
constructing a fire engine. At the College de la Trinité in Lyon, he so impressed his
teachers that they invited him to teach physics at age 16 or 17. In the summer of
1764, at age 18, Monge returned to Beaune. There, having devised his own plans of
observation and constructed his own surveying instruments, he created with remark-
able skill and care a large-scale map of his hometown. (The original is still at the
Beaune library.) Word of this map reached the prestigious Ecole Royale du Génie de
Mézieres (Mézieres Royal School of Engineering), and a high-ranking officer there
offered Monge a position as a draftsman. Although Monge was unaware that he could
not become a student officer because he was a commoner by birth, his decision to
accept the offer turned out to be a good one.

Monge was politically active, and held several government posts. From 1783 to
1789 he was an examiner of naval cadets, and from August or September 1792 until
April 1793 he was Minister of the Navy, a position made difficult by the troubles and
failures of the French navy, which made Monge a target of criticism. Shortly after re-
signing as Minister of the Navy, Monge began supervising armaments factories and
writing instruction manuals for the workers. Monge supported the French Revolution,
but in the turmoil that developed, many people had unjust accusations leveled against
them and were executed. Monge himself was sometimes in danger, and at one point,
after being denounced by the porter at his lodgings, he left Paris. In 1796, Napoleon
wrote to Monge to offer him his friendship and a position. The two had met when
Monge was Minister of the Navy and Napoleon, then a little-known artillery officer,
had been impressed by how Monge had treated him. Monge was sent to Italy to ob-
tain artworks for France, and during 1798 and 1799 he accompanied Napoleon on his
Egyptian campaign. After establishing the Consulate in 1799, Napoleon named Monge
a senator for life.

Monge’s strong sense of justice and equality, his honesty, and his kindness were
evident throughout his political career. As an examiner of naval cadets Monge rejected
outright unqualified sons of aristocrats. He spoke frankly with Napoleon, and may
have exerted a moderating influence on him [2, pp. 190, 196, 204]. When Napoleon
returned from exile in Elba, for instance, Monge successfully counseled against taking
excessive vengeance. Sadly for Monge, he was stripped of his honors after Napoleon’s
final fall from power in 1815. He died in Paris on July 28, 1818.

Monge held several teaching positions, beginning with his teaching duties in
physics at age 16 or 17. In 1769, at age 22, Monge became a mathematics profes-
sor at the Ecole Royale du Génie de Mézieres; by 1772 he was teaching physics as
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well. After his election to the Académie des Sciences in 1780, Monge began to spend
long periods in Paris. Doing so allowed him to teach hydrodynamics at the Louvre
(this position had been created by Anne Robert Turgot (1727-1781), a statesman and
economist [15, p. 23]), but it also forced him to resign his post at Mézieres in 1784.
During 1794-1795 Monge taught at the Ecole Normale de I’an III, and starting in
1795, and again after returning from Egypt, he taught at the Ecole Polytechnique.
Declining health finally forced him to give up teaching in 1809.

Monge was an influential educator for several reasons. One is his close association
with the Ecole Polytechnique. Monge successfully argued for a single engineering
school rather than several specialized schools, helped to develop the curriculum, talked
with professors, advised administrators, and supervised the opening of the school. In
1797, Monge was appointed Director. With Monge, Laplace, and Lagrange among its
first faculty, the Ecole Polytechnique was influential from the beginning, and it remains
France’s best-known technical school.

A second reason for Monge’s influence is that he was an exceptional and inspiring
teacher, well liked and respected by his students. Monge was, according to Boyer,
“perhaps the most influential mathematics teacher since the days of Euclid.” [4, p. 468]
Among his students who made mathematical contributions of their own were Lazare
Carnot (1753-1823), Charles Brianchon (1785-1864), Jean Victor Poncelet (1788—
1867), Charles Dupin (1784-1873), J. B. Meusnier (1754-1793), E. L. Malus (1775-
1812), and O. Rodrigues (1794-1851).

Monge’s major mathematical contributions were in the areas of descriptive geom-
etry, differential geometry, and analytic geometry. His work in descriptive geometry
began in his early days at Mézieres, when he was assigned to produce a plan for a
fortress that would hide and protect its defenders from enemy attack. At the time such
problems were solved by long computations, but Monge used a geometrical method to
solve the problem so quickly that his superior officer at first refused to believe Monge’s
results. (For details on the problem and on Monge’s solution, see Taton’s account [15,
pp. 12-14].) When the solution was found to be correct, it was made a military secret
and Monge was assigned to teach the method. (He was not allowed to teach the method
publicly until 1794, at the Ecole Normale de 1’an IIL.)

In 1802, Monge and Jean-Nicolas-Pierre Hachette (1769-1834) published Appli-
cation d’algébre a la géométrie, in the Journal de I’Ecole Polytechnique. (This work
appeared again in 1805 and 1807.) It summarized Monge’s lectures in solid analytic
geometry. Boyer remarks: “The notation, phraseology, and methods are virtually the
same as those to be found in any textbook of today. The definitive form of analytic
geometry finally had been achieved, more than a century and a half after Descartes
and Fermat had laid the foundations.” [3, p. 220]

Monge published two papers [11, 12] entitled “Sur la pyramide triangulaire,” in
1809 and 1811. In the remainder of the present paper, we focus mainly on the content
of these two papers. A detailed account of all of Monge’s work on the tetrahedron is
given by Taton [15, pp. 241-246].

The Monge point of the tetrahedron

Two edges of a tetrahedron are called opposite edges if they have no common vertex.
A tetrahedron ABCD has three pairs of opposite edges; one pair is AB and CD. With
this convention, we can define six Monge planes, one for each edge:

DEFINITION. A Monge plane is perpendicular to one edge of a tetrahedron and
contains the midpoint of the opposite edge.
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The following theorem guarantees the existence of a Monge point, where the Monge
planes meet.

THEOREM 1. The six Monge planes of a tetrahedron are concurrent.

C:(0,0,4)

A:(4,0,0)
X

Figure 1 A tetrahedron with vertices at the points O(0, 0, 0), A(4, 0, 0), B(0, 4, 0), and
C(0,0, 4). The six Monge planes x =0,y =0, z=0, x =y, y = z, and x = z intersect
at the origin.

Example: FIGURE 1 shows the tetrahedron with vertices at O(0, 0, 0), A(4, 0, 0),
B(0, 4, 0), and C(0, 0, 4). The six Monge planes of this tetrahedron are the three co-
ordinate planes and the perpendicular bisectors of edges AB, BC, and CA, that is, the
planes x =0, y=0,z=0,x =y, y = z, and z = x. The origin lies on all six of
these planes and is therefore the Monge point. Notice also that three Monge planes
are perpendicular to any given face of the tetrahedron and therefore intersect in a line
perpendicular to the face. For example, the Monge planes x =0, y =0,and x = y
are perpendicular to face AOB and intersect in the z-axis. The three Monge planes
perpendicular to face ABC intersect in the line x = y = z.

The following proof differs only in details from the one given by Monge [12,
pp- 263-265]. A similar proof is given by Thompson [16].

Proof. In tetrahedron ABCD, construct a triangle B’C'D’ by connecting the mid-
points of the three edges issuing from vertex A (as in FIGURE 2). Each of the three
Monge planes perpendicular to an edge of face BCD cuts the triangle B'C’'D’ in one
of its altitudes, for each contains a vertex of this triangle and cuts its opposite side per-
pendicularly. Therefore, these Monge planes intersect in the perpendicular from the
orthocenter H’ of triangle B'C’ D’ to face BCD. Let us call this line the Monge normal
of face BCD. By the same reasoning, each face of the tetrahedron has a Monge normal
associated with it.

The Monge normals of faces ABC and ACD intersect at a point M, for they are not
parallel and they both lie in the Monge plane perpendicular to edge AC. We can now
be certain that M lies on every Monge plane except possibly the one perpendicular to
edge BD. Since M lies on the Monge planes perpendicular to edges AB and AD, it lies
on their line of intersection. But their line of intersection is the Monge normal of face
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D

B C

Figure 2 Atetrahedron ABCD with a midpointtriangle B'C' D' parallel to face BCD. Face
BCD lies in the plane of the paper and the view is from directly above the tetrahedron.
Intersections involving the three Monge planes perpendicular to the edges of face BCD
are marked as follows: thin solid lines indicate the intersections of the Monge planes
with that portion of the surface of the tetrahedron lying between face BCD and triangle
B'C'D’; dashed lines indicate the intersections with B'C'D'.

ABD, which lies in the Monge plane perpendicular to BD. Hence, M lies on all six
Monge planes, and the theorem is established. [ ]

The Monge point, the circumcenter, and the centroid

Monge actually discovered and proved more than Theorem 1. Before stating his more
general result, we will describe relationships among the bimedians and the centroid;
relate the centroid to the center of mass and the center of gravity; define the circum-
center; and give an example.

DEFINITION. A bimedian is a line segment connecting the midpoints of opposite
edges of a tetrahedron.

LEMMA. The three bimedians of a tetrahedron bisect each other.

We give analytic and synthetic proofs. The first proof is very simple; Monge himself
gave the second [11, p. 2].

Analytic proof. Write the four vertices as A(a,, a,, az), B(by, by, b3), C(cy, ¢2, C3),
and D(d,, d», d3). Straightforward uses of the midpoint formula (three for each bime-
dian) show that the midpoint of each bimedian is the point ((a; + by + ¢; + d1)/4,
(a2 +by+c2+dr)/4, (as + b3 +c3 + d3) /4). u
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Figure 3 Tetrahedron ABCD (thick solid lines), its circumscribed parallelepiped (thin
solid lines), and its three bimedians (dashed lines). The bimedians are the axes of the
parallelepiped, so they bisect each other at the center of the parallelepiped.

Synthetic proof. Through each edge of the tetrahedron, construct a plane that is
parallel to the opposite edge. (To construct the desired plane through, say, edge AB,
construct a line through AB that is parallel to edge CD.) This process produces a paral-
lelepiped that circumscribes the tetrahedron. (See FIGURE 3.) Each edge of the tetra-
hedron is a diagonal of a face of the parallelepiped; opposite edges of the tetrahedron
are diagonals of opposite faces of the parallelepiped. Hence, the three bimedians of
the tetrahedron are the axes of the parallelepiped (the segments connecting the cen-
ters of opposite faces). Therefore, the bimedians bisect each other at the center of the
parallelepiped, and the proof is complete. ]

Before stating the next theorem, we note that the centroid is sometimes referred to
as the center of mass or the center of gravity. Monge himself [11, 12] uses the term
“center of gravity.” The centroid of a solid coincides with its center of mass if the solid
has uniform density. (The centroid of a solid is also known as its center of volume.)
The center of gravity of a solid coincides with its center of mass if the solid is subjected
to a uniform gravitational field. Hence, for the case of an ideal tetrahedron that is both
of uniform density and subjected to a uniform gravitational field, the center of mass,
center of gravity, and centroid all coincide.

Polya discusses the center of gravity (centroid) of the tetrahedron in an intuitive
manner [14, pp. 38-45].

THEOREM 2. The centroid of a tetrahedron lies at the common midpoint of its three
bimedians.
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This theorem plays a crucial role in what follows. Monge [11] gave two complete
proofs of it, and also stated a previously-known theorem from which he said the re-
sult could be easily derived. (The theorem asserts that dg = (ds + dg + dc + dp) /4,
where the variables are the signed distances of the centroid G and the vertices from
an arbitrary plane, the distances being positive for points on one side of the plane and
negative for points on the other.) Following are some key ideas from Monge’s first
proof.

Let us consider a tetrahedron as an infinite collection of line segments, all parallel to
one edge of the tetrahedron. A median plane of a tetrahedron contains one edge and the
midpoint of the opposite edge. If a median plane bisects the edge that the line segments
are parallel to, it will bisect all of the line segments that constitute the tetrahedron. (See
FIGURE 4.) It follows that the centers of mass of all of the line segments—and there-
fore also the center of mass of the entire tetrahedron—Ilie on the median plane. Since
we may consider line segments parallel to any edge of the tetrahedron, we conclude
that the centroid lies on all six median planes. But median planes that contain opposite
edges intersect in a bimedian. Hence, the centroid of the tetrahedron lies on each of the
three bimedians. Since, by the Lemma, the bimedians bisect each other, the centroid is
their common midpoint.

X
C

Figure 4 An arbitrary segment s that is parallel to edge AD and that has its endpoints in
faces ABC and BCD. Triangle ADX is the intersection of the tetrahedron with the plane
of edge AD and segment s. Median plane BCMap bisects segment s because it contains
XMap, which is a median of triangle ADX and bisects s.

The centroid of a tetrahedron can be defined as the intersection of its bimedians or
as the intersection of its four medians (the line segments from a vertex to the centroid
of the opposite face). Monge related these two definitions [11, p. 4]. If two median
planes contain opposite edges of a tetrahedron, they will intersect in a bimedian; if
median planes contain edges issuing from the same vertex of a tetrahedron, they will
intersect in a median. To see this consider the three median planes ABMcp, ACMpp,
and ADMgc. Since BMcp, CMpgp, and DM pc are the medians of face BCD, each of
these median planes contains the centroid Ggcp of face BCD. They therefore intersect
in the median AGycp of the tetrahedron.
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The circumcenter of a tetrahedron is the center of the sphere defined by the four
vertices of the tetrahedron. The circumcenter is equidistant from the four vertices and
lies at the intersection of the perpendicular bisectors of the six edges of the tetrahedron.

For the tetrahedron in FIGURE 1 the centroid is (1, 1, 1) (by Theorem 2) and the
circumcenter is (2, 2, 2). Since the Monge point is at the origin, it is seen to be sym-
metric to the circumcenter with respect to the centroid. A similar property holds for
every tetrahedron:

MONGE’S THEOREM. The six Monge planes of a tetrahedron are concurrent at
the reflection of the circumcenter in the centroid.

An analytic proof is straightforward, provided the origin is placed at the circum-
center of the tetrahedron. The coordinates of the reflection of the circumcenter in the
centroid, M, are then double the coordinates of the centroid (which were given in the
analytic proof of the Lemma). One can show that M satisfies the equation of any of the
Monge planes by substituting the coordinates of M into the equation, simplifying, and
using the fact that the vertices of the tetrahedron are equidistant from the origin. Eves
gives a complete analytic proof along these lines [7, p. 149]. Forder gives a somewhat
different analytic proof [10, p. 471].

The following synthetic proof appears in Altshiller-Court’s book [1, p. 76] (an ex-
cellent source of information on the geometry of the tetrahedron).

Proof. Consider the perpendicular bisector of any edge of a tetrahedron and the
Monge plane perpendicular to the same edge. These two planes are parallel. A bime-
dian crosses between them, for the perpendicular bisector contains the midpoint of one
edge and the Monge plane contains the midpoint of the opposite edge. The centroid of
the tetrahedron lies midway between the planes, for the centroid is the midpoint of the
bimedian (Theorem 2). Hence, the reflection in the centroid of any point in one plane
lies in the other plane. In particular, since the circumcenter lies in the perpendicular
bisector, its reflection in the centroid is a point M lying in the Monge plane. By this
reasoning, M lies on all six Monge planes and is the Monge point. ]

Mcp

Mag

Figure 5 The plane of the circumcenter O, the centroid G, the Monge point M, and
the midpoints Mag and Mcp of edges AB and CD of tetrahedron ABCD. The perpendic-
ular bisector of edge AB intersects the plane of the figure in MapO; the Monge plane
perpendicular to AB intersects it at McpM.

FIGURE 5 depicts the plane of the circumcenter, the centroid, the Monge point, and
one of the three bimedians.
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Except for a brief introduction and a final short paragraph, Monge devotes “Sur la
pyramide triangulaire” [12] entirely to a long two-part proof of this theorem. He begins
the final paragraph with the assertion that the entire proof can be greatly simplified,
but he gives us only key points of the simplified proof.

The first part of the long proof, which establishes the existence of the Monge point,
we gave as our proof of Theorem 1. The second part establishes that the Monge point
is the reflection of the circumcenter in the centroid, and it is not very elegant. We omit
this part, but remark that it involves the construction of three new vertices related to a
tetrahedron 7. In the final paragraph Monge extends the construction from the previ-
ous proof by adding a fourth new vertex to form a conjugate or twin tetrahedron 7.
He tells us that the twin tetrahedra have a common centroid, that their circumcen-
ters are symmetric with respect to the centroid, and that the Monge point of T is the
circumcenter of 7’. A citation to a paper in which Monge defines twin tetrahedra is
given.

Why would Monge have given a long proof when he had a much shorter and more
elegant proof, and why would he have given the long proof in detail and simply out-
lined the short one? Perhaps he wanted to stimulate the reader’s interest by setting up
the simplification, to entice him into trying to fill in the details. Here we may see a hint
of Monge’s gift for teaching.

Using the information Monge gives us [12, p. 266] and a complete proof using twin
tetrahedra [1, p. 76], we speculate on how Monge might have filled in the details. In
FIGURE 3 construct the twin 7" of tetrahedron T = ABCD by connecting the four
vertices of the parallelepiped that do not belong to 7. Label the vertices of 7" so that
the diagonals of the parallelepiped are AA’, BB, CC', and DD'. (See FIGURE 6.) Now,
consider the Monge plane perpendicular to AB and containing M¢p. This Monge plane
is perpendicular to A’B’ because AB and A’B’ are parallel. It contains M 4 p because
Mcp and M 4 g coincide, both being midpoints of diagonals of the same parallelogram.
Hence, the Monge plane perpendicular to edge AB of T is the perpendicular bisector
of edge A’B’ of T'. Applying the same reasoning to the other Monge planes of T, we
establish the key idea of the proof: The six Monge planes of T are the perpendicular
bisectors of 7". Since the perpendicular bisectors of 7’ intersect at the circumcenter O’
of T’, we have M = O’, and the existence of the Monge point is established. Now T
and T are clearly symmetric with respect to the center of the parallelepiped. Therefore,
by FIGURE 3 and Theorem 2, T and 7" are symmetric with respect to the centroid G
of T, whence the circumcenters O and O’ are reflections in G. Substituting M for O’
establishes the symmetry of M and O with respect to G and completes the proof.

In the proof just given we guessed that Monge would have used the circumscribing
parallelepiped. This seems plausible because Monge defined twin tetrahedra in terms
of the circumscribing parallelepiped in another paper [15, p. 242], and a figure such as
FIGURE 6 may help one see the theorem. However, use of the circumscribing paral-
lelepiped can be avoided in the above paragraph with the following changes. (1) Define
T’ as the reflection of T in G. (2) Replace the sentence, “It [the Monge plane perpen-
dicular to AB and containing M¢p] contains M 45 because M¢p and M 4 g/ coincide,
both being midpoints of diagonals of the same parallelogram” with, “It contains M4/ g/
because M¢p and M 4 g coincide, both being the reflection of Mg in G, M 4/ because
T and T’ are reflections in G and Mp because of Theorem 2.”

Notice that in each of the three synthetic proofs of Monge’s theorem we have dis-
cussed (single tetrahedron and twin tetrahedra with and without the circumscribing
parallelepiped) Theorem 2 plays an important role.

For a different approach to proving Monge’s theorem see Thompson’s proof [16].
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Figure 6 Twin tetrahedra ABCD and A'B'C’D’ (thick black and gray solid lines, respec-
tively) and their circumscribed parallelepiped (thin solid lines). Face ABD is in the plane
of the paper. The Monge plane perpendicular to edge AB and containing the midpoint of
edge CD is seen edge on (dashed line). This plane is also the perpendicular bisector of
edge A'B’.

The rectangular tetrahedron: a special case

Monge’s theorem invites comparison between the triangle and the tetrahedron; Monge
stresses this analogy [12]. In a plane triangle, the circumcenter, the centroid, and the
orthocenter lie on a line called the Euler line. The centroid lies between the other two
points, twice as far from the orthocenter as from the circumcenter. (Two elegant proofs
of this theorem are given in books by Dorrie [6, p. 141] and Eves [9, p. 109].) By
analogy, the line containing the circumcenter, the centroid, and the Monge point of a
tetrahedron is called the Euler line of the tetrahedron.

This analogy raises natural questions: Must a tetrahedron have an orthocenter, that
is, a point at which its four altitudes meet? If an orthocenter exits, how is it related to
the Monge point? The following definition and theorem provide answers.

DEFINITION. A rectangular, or orthocentric, tetrahedron is one in which opposite
edges have perpendicular directions.

THEOREM 3. A tetrahedron has an orthocenter if and only if it is rectangular. In a
rectangular tetrahedron, the orthocenter is the Monge point.

Proof. Suppose that tetrahedron ABCD has an orthocenter Hr. Since plane ABHr
contains the altitudes to faces BCD and ACD, it is perpendicular to both of these faces
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and to their intersection at edge CD. Hence, edges AB and CD have perpendicular di-
rections. By the same reasoning, edges AC and BD and AD and BC have perpendicular
directions and tetrahedron ABCD is rectangular.

Assume that the tetrahedron is rectangular. Since opposite edges have perpendicular
directions, each Monge plane must contain not only a midpoint of an edge but an entire
edge of the tetrahedron. Hence, if three Monge planes are perpendicular to the edges
of any one face of the tetrahedron, they contain the opposite vertex, and the Monge
normal and the altitude associated with the face coincide. It now follows that the four
altitudes intersect at the Monge point. This completes the proof. n

Altshiller-Court [1, p. 71] gives a proof of the concurrency of the four altitudes that
does not assume knowledge of the Monge point. FIGURE 1 provides an example of a
rectangular tetrahedron. The four altitudes do indeed coincide with the Monge normals
and meet in the Monge point O.

Mannheim’s theorem

A second set of planes, named for A. Mannheim (1831-1906), also intersect at the
Monge point.

DEFINITION. A Mannheim plane contains the altitude to and the orthocenter of a
face of a tetrahedron.

MANNHEIM’S THEOREM. The four Mannheim planes of a tetrahedron intersect
at the Monge point.

Proof. In FIGURE 2, let the orthocenters of face BCD and triangle B'C’'D’ be H
and H’, respectively. Note that triangle B’C’D’ is a dilation of face BCD with cen-
ter A and ratio 1/2; thus, H’ is the midpoint of AH. Consider the Mannheim plane
that contains H and the altitude from vertex A, that is, the Mannheim plane that is per-
pendicular to face BCD. The line AH lies in this plane, whence H’ lies in it, whence
the Monge normal of face BCD lies in it (by our proof of Theorem 1), whence the
Monge point lies in it. By the same reasoning, the Monge point lies in the other three
Mannheim planes, and the proof is complete. |

Two additional proofs of this theorem appear in Altshiller-Court’s book [1, p. 78].

Acknowledgments. I thank Professor Howard Eves for his invaluable help in bringing this paper to fruition. He
first inspired my interest in the Monge point and he gave me both encouragement and practical help.

I also thank Mr. Gary Krupa, who, using French sources, answered my questions with patience, concern for
detail, and genuine interest. The biographical information given here is more complete and accurate because of
his efforts.

REFERENCES

1. Nathan Altshiller-Court, Modern Pure Solid Geometry, 2nd ed., Chelsea Publishing Co., New York, 1964.

2. Eric Temple Bell, Men of Mathematics, Simon & Schuster, New York, 1986.

3. Carl B. Boyer, History of Analytic Geometry, The Scripta Mathematica Studies Nos. 6 and 7, Scripta Math-
ematica, Yeshiva University, New York, 1956.

, A History of Mathematics, 2nd ed., revised by Uta C. Merzbach, John Wiley & Sons, New York,

1991.

5. Julian Lowell Coolidge, A History of Geometrical Methods, Oxford University Press, Oxford, 1947.

6. Heinrich Dorrie, 100 Great Problems of Elementary Mathematics: Their History and Solution, Dover Publi-
cations Inc., New York, 1965, translated by David Antin.



VOL. 76, NO. 3, JUNE 2003 203

7. Howard Eves, The Analytical Method in Geometry, unpublished text used at the University of Central Florida
in 1989.

, An Introduction to the History of Mathematics, 6th ed., Saunders College Publishing, Philadelphia,
1990.

, A Survey of Geometry, revised edition, Allyn and Bacon, Boston, 1972.

10. H. G. Forder, A Theorem in Coolidge’s “Circle and Sphere,” Math. Gaz. 15 (1930-1931), 470—471.

11. Gaspard Monge, Surla pyramide triangulaire, in Correspondance sur I’ Ecole Impériale Polytechnique, edited
by J. Hachette, 1813-1816, Vol. 2, pp. 1-6.

, Sur la pyramide triangulaire, in Correspondance sur I’Ecole Impériale Polytechnique, edited by J.
Hachette, 1813-1816, Vol 2, pp. 263-266.

13. J. J. O’Connor and E. F. Robertson, Gaspard Monge, The MacTutor History of Mathematics Archive,
School of Mathematics and Statistics, University of St. Andrews, Scotland, http://www-groups.dcs.
st-andrews.ac.uk/ history/Mathematicians/Monge.html.

14. George Polya, How to Solve It, 2nd ed., Princeton University Press, Princeton, NJ, 1973.

15. René Taton, L’oeuvre scientifique de Monge, Presses Universitaires de France, Paris, 1951.

16. H. F. Thompson, A Geometrical Proof of a Theorem connected with the Tetrahedron, Proc. Edinb. Math.
Soc. 17 (1908-1909), 51-53.

Math Bite: A Novel Proof of the
Infinitude of Primes, Revisited

DANIEL CASS

GERALD WILDENBERG
St. John Fisher College

Rochester NY 14618

cass@sjfc.edu

wildenbe@sjfc.edu

We rephrase a proof of the infinitude of primes by Fiirstenberg [1]. The original
used arithmetic progressions as the basis for a topology on the integers. Our approach
avoids the language of topology.

Recall: For A a subset of the integers, the characteristic function of A has value
I for x in A and O otherwise. A periodic set of integers is one whose characteristic
function is periodic.

Observe that if § and T are periodic sets with periods S and T respectively, then
S UT is periodic with a period dividing lcm(s,#) and that this is easily extended to all
finite unions. And observe that if S is periodic, then the complement of S is periodic.

THEOREM. There are infinitely many prime integers.

Proof. For each prime p, let S, = {n - p : n € Z}. Define S to be the union of all
the sets §,, each of which is periodic. If this union is taken over a finite set, then S
is periodic and then so is its complement. But the complement of S is {-1,1}, which
being finite is not periodic. Hence the number of primes is infinite.

As a pedagogic coda, we note that filling in the details of our proof would be a nice
exercise in a course serving as a bridge to upper division mathematics.
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Given a function f : § — §, it is of great interest in the field of dynamical systems
to figure out which points in the set S are eventually sent back to themselves through
repeated applications of f. More precisely, people like to know which points x and
which positive integers n have the property that f"(x) = x, where f" denotes the nth
iteration of f. Such a point x is called a periodic point, and the smallest such n is called
the prime period of x. (Note that this does not require that n be a prime number.)

According to a famous theorem by Li and Yorke [8], for a continuous function f
on a line or a closed interval S, if f has a point of prime period 3, then f has a point
of prime period n for every n. This amazing result turns out to be a special case of the
even more amazing Sarkovskii theorem [4, Ch. 11].

To construct a simple example of a continuous function with a point of prime pe-
riod 3 on the unit interval, we choose 0 — 1/2 — 1 — 0 as our 3-cycle and connect
the points (0, 1/2), (1/2, 1), and (1, 0) by a piecewise-linear function

[ x+12 if0<x<1/2,
f(x)‘{z—zx if12<x<1.

We call f the open-tent function. Its graph is given in FIGURE 1.

1

N|—

0 1

1
2

Figure 1 The open-tent function

The open-tent function f is well known and is used as a simple example to illustrate
that prime period 3 implies chaos [1, p. 248; 3, p. 135; 6]. However, knowing the
existence of points with various periods and actually finding them are two different
matters. In a nice note, David Sprows [10] uses binary expansions to construct for the

204
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open-tent function f a point of prime period » for each positive integer n. However,
with this method, information about the orbits of f is far from clear. The method we
present in this Note gives a far more explicit picture.

The orbit of x is the set {x, f(x), f*(x), f}(x), ...}. For instance, the orbit of 2/3
consists of a single point, while the orbit of 1/3 includes a single additional point, 5/6.
Clearly, the orbit is finite if x is periodic.

Our key for giving a precise description of the orbits is through a method called
encoding and decoding. One might view a binary expansion for any x € [0, 1] as an
identification number, or “ID,” for x. Our strategy is to provide each x € [0, 1] with
a different infinite sequence of zeros and ones as its new ID; this is called encoding.
With this new ID (encoding), we can know the orbital information of the open-tent
function f much better. For example, we can tell how many points of period n there
are and how we can locate al/ of them. We can also locate many other points with
interesting orbital features, such as a point that stays obediently in the interval [1/2, 1]
for every single iteration of f, escaping exactly once on the one-millionth time.

The open-tent function is an example of a dynamical system (S, f), a set S together
with a function f from S§ back to itself. The open-tent example, where the set is [0, 1]
would be written ([0, 1], f). The key idea of this note is as follows: First, we use
a “digital (or symbolic) model” to encode the open-tent function system ([0, 1], f),
namely, the well-known symbolic dynamical system (G, o), called the golden-mean
shift. Then we investigate the encoded orbital information of ([0, 1], f) in (G, o)
which is much easier to handle digitally. Finally, we decode the information obtained
from (G, o) back to the system ([0, 1], f) in the same way that a CD player decodes
its digital codes back into music.

This approach connects many interesting topics in undergraduate mathematics, such
as the golden mean, Fibonacci and Lucas numbers, directed graphs, matrices, binary
expansions, and coding. Our technique is standard in the field of dynamical systems
(1,4, 5,7, 9], but we provide a rigorous and complete coding algorithm for the open-
tent function, including the coding for the numbers of the form ;/2" (the boundary
points that arise upon repeatedly bisecting the unit interval), which has previously
been unavailable to students.

Unlike the tent function (obtained by replacing x + 1/2 by 2x for 0 < x < 1/2in
the definition of f), which is mentioned in almost every dynamical system text and uti-
lizes all 0-1 sequences for its coding, the open-tent function gives us an elementary yet
nontrivial example of coding in terms of a proper subset of the set of all 0-1 sequences,
as well as a simple yet rich application of symbolic dynamics—a fast-growing branch
of modern mathematics [7, 9].

The golden-mean shift A symbolic dynamical system (X, o) of the kind considered
in this note consists of a set X of infinite sequences of symbols and a shift func-
tion o that knocks off the first term of each sequence. As an example, let {0, 1} be
the symbol set, and let X = {0, 1}* be the set of all infinite 0-1 sequences of the
form x = cycicz - -+, where ¢; = 0 or 1. Define the shift function o : X — X by
o(x) = cjcyc3 - - -. For the open-tent function, we let G denote the subset of {0, 1}*°
that consists of the sequences in which adjacent zeros are forbidden. The set G together
with the shift function o defined above is called the golden-mean shift.

A directed graph H associated with G is shown in FIGURE 2. The vertices of H
are the two symbols 0 and 1. The directed edges on H give the rule indicating which
symbol can follow another in the sequences of G. Since there is no edge on H from 0
to itself, adjacent zeros are forbidden in the sequences of G. It is easy to see that the
elements of G represent all infinite walks on H that start at either of the two vertices
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Figure 2 Directed graph H of golden-mean shift

and continue forever. The symbols in the sequence indicate the vertices visited during
the walk in the order they are visited. The directed graph H can be recorded by the

integer matrix
0 1
=(11)

as follows. Let the (i, j) entry, A(i, j), of A be the number of edges from vertex i to
vertex j. The matrix A is called the adjacency matrix of H. Note that the eigenvalues
of A are the golden means

1+45
"

Inductively, we have

0 1 0 | 0 1 2 11
A =(0 1),A =(l ]),A =(1 2)
n __ Fn—l Fn
AT= ( F,  Fo ) ’
where Fp =0, Fy =1, and F, = F,_| + F,_, for n > 2, are the Fibonacci num-
bers, treated extensively elsewhere in this issue. It is well known that the nth power
of an adjacency matrix counts the walks of length n on its graph. In fact, A"(i, j)
counts the walks on H of length n from vertex i to vertex j, and the trace of
A" tr(A") = A™(1,1) + A"(2,2), equals the number of closed walks of length n
on H. The sequence {tr(A")}>°, also satisfies the Fibonacci recurrence relation
since tr(A") = F,_, + F,;; with tr(A°) =2 = L and tr(A') = | = L,. Therefore,
{tr(A™)}32, is the sequence of famous Lucas numbers L,,.

We use the notation (cyc; - - - ¢,—1)* to indicate the sequencein G or {0, 1}* formed
by concatenating infinitely many copies of coc; - - - ¢,—;. Hence,

o((coct -+ €ca1)®) = (c162+ - - Cp_1€0)™  and

0" ((cocy -+ €ae1)™) = (coc1 -+ - Ca1)™,

80 (coc) - - - cp—1)® has period n under o. In G, then, we have only one fixed point
1° = 11--- since 0(1*°) = 1*° and 0% is not in G. We have two points (01)>* and
(10)* with prime period 2, since o ((01)*) = (10)* and o ((10)*) = (01)*°. The
element 1% = (11)* also has period 2 though its prime period is 1.

The one-to-one correspondence between the elements of G and the infinite walks
on H implies

the number the number of
of period-n | = n-step closed =tr(A")=L,. (1)
points in G walks in H
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Encoding and decoding The link between a general dynamical system and its sym-
bolic dynamical system is realized by the encoding and decoding processes. Through
them we show that there is a one-to-one correspondence between the period n points of
the open-tent function in [0, 1] and those of the golden-mean shift in G. We begin our
encoding by making a partition of the unit interval, /o = [0, 1/2) and [, = [1/2, 1].
We then encode every point x € [0, 1] as an infinite sequence as follows:

E(x) = cocicy-- -, where ¢, = 0if fX(x) e Iyand ¢, = 1 if fX(x) el,.

The sequence E(x) = cycic; - - - is called the encoding of x (or the itinerary of x).
It is the new ID of x. For the open-tent function f, we see that f(fy) € I, so every
0 in the encoding of a number must be followed by a 1, that is, adjacent zeros are
forbidden, and E ([0, 1]) € G. As an example, since f°(0) =0 ¢€ Iy, f(0) = 1/2 €
I;,and f2(0) = 1 € Iy, the first three digits in the encoding of 0 are 011. Since f sends
1 back to 0, the sequence repeats. So, E(0) = (011)*°. Similarly, E(1/2) = (110)*
and E(1) = (101)*.

Though a brute force encoding is always possible, decoding is not as straightfor-
ward. To make a more general analysis possible, we move back and forth between
x and E(x) through the binary expansion of x. Things are complicated a bit by the
fact that some rational numbers have two distinct binary expansions. For example, in
binary 1/2 = 0.10 = 0.01 just as in decimal 1/2 = 0.50 = 0.049. We must proceed
carefully.

Rational numbers of the form j/2" are called dyadic numbers. The dyadic numbers
in (0, 1] are exactly the rational numbers in the unit interval that have two distinct
binary expansions. If x € (0, 1] is dyadic, then there exist nonnegative integers j and
n such that in lowest terms

X = —2{”— =0xX2...%,-110 = 0.x,x2 ... x,_,01.

Before presenting technical coding formulas, let us see some heuristic descriptions.
Because the second piece of f has a slope of —2, an interval in /, is stretched by
f to double its length, and its orientation is reversed (if x < y, then f(x) > f(y)),
while the first piece of f simply slides an interval in /y to the right 1/2 unit into /,.
The nth iteration of f is a piecewise function that is linear on dyadic intervals of the
form (p/2", (p + 1)/2"). For the dyadic numbers, we must make the proper choice of
binary expansion. A function v is defined in (2) to serve this purpose.

Let us consider a generic case where x € [0, 1] is not dyadic. Suppose x =
0.x;x2x3 ... is its binary expansion and E(x) = cocjc, - - - is its encoding. If x; = 0,
then x € I, and f(x) € I}, so we can determine that coc; must be 01. Similarly, if
x; = 1, then we can determine that ¢, = 1. This is our first step of encoding through
the binary expansion. Note that in the first case (x; = 0), f is applied once to de-
termine the first two symbols in the encoding. In the second case (x; = 1), f is not
applied at all and only the first symbol of the encoding was determined. In both
cases, the encoding step ends with a symbol 1. That is, when the orbit enters /,. To
summarize:

X1 =0:>C()C] =01,
x;=1=c¢ =1

Having used the first digit of the binary expansion, we ignore it and focus on the
second for step 2, because this digit determines the next entry in the encoding, whether
itis ¢; or ¢;. Suppose x = 0. xx2....If x, =0, thenx € (0, 1/4) or (1/2, 3/4). If the
former, then we know that f moved (0, 1/4) onto (1/2, 3/4) without an orientation



208 MATHEMATICS MAGAZINE

reversal in step 1. The next iteration of f sends (1/2, 3/4) to I, so the next symbol in
the coding is 1 and there is a total of one orientation reversal. Similarly, if x, = 1, then
the next two symbols in the coding are 01 with one orientation reversal, and again, the
step ends with the orbit entering ;. Thus,

x, = 0 = the next symbol in the encoding is 1,
x, = 1 = the next two symbols in the encoding are O1.

The third step deals with x3. It produces another orientation reversal, so the orien-
tation is the same as in step 1. Thus,

x3 = 0 = the next two symbols in the encoding are 01,
x3 = 1 = the next symbol in the encoding is 1.

The process continues as above through the binary expansion of x. The encoding
rules alternate, using x, as the template for x, if n is even, and x3 if n is odd. The
argument, including the subtle handling of the dyadic numbers, is in the proof of The-
orem 1. A casual reader could skip the proof.

We now develop technical algorithms for encoding and decoding. The expansions
presented are binary. Define v : [0, 1] — {0, 1}* by

X|Xp -+ if x =0.x;x;...and is_not dyadic, or O,
Y(x)={ xjxp---x,110%° ifx = O.xlxz...x,,_llg and n is odd, 2)
XXy x,101%° if x = 0.x;x; ... x,_,01 and n is even.

We call ¥ (x) the proper binary expansion for x. Obviously, ¥ is one-to-one and
has a left inverse ¢ : {0, 1}*> — [0, 1] defined by

| N

(212023 °) = 0.212223 ... = Z

k=1

k
k

[\9)

with ¢ o Y = Idjp ). It is also clear that ¢ is onto and almost one-to-one—except that
it maps two binary expansion sequences to each nonzero dyadic number.

The next function, B, is a bijection between {0, 1}*° and G. This function and its
inverse are at the heart of the encoding and decoding processes, since they provide
the correspondence between the proper binary expansion of a point and its encoding.
Define B : {0, 1}* — G by B(z12223- ) = y1y2)3 - - -, Where

01 ifnisoddandz, =0,

_ 1 ifnisoddandz, =1,
In = 1 ifnisevenandz, =0,
01 ifnmisevenandz, = 1.

3)

For example,

B(0*) = B(0000---) =011011--- = (011)*® and
B(01%°) = B(0111---) = 0(101)*°.

It is easy to see that B is a bijection with the inverse given by B~'(y1y2y3 ) =
212223 - - - Where y;y,y3 - - - € G, ¥, equals 01 or 1, and

if n is odd and y, = 01,

0
_J 1 ifnisoddand y, =1,
n = 1 ifnisevenand y, = 01, )
0

ifnisevenand y, = 1.
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Define the decoder D : G — [0, 1] of E by D = ¢ o B~'. We have the following:

THEOREM 1. E = Bo lﬁ, DoE = Id[O.l]; and E o D'E([O,l]) = [dE([O,l])- In par-
ticular, the encoder E is one-to-one and the decoder D is onto.

Proof. We first show that £ = B o . Suppose x € [0, 1] is not dyadic and ¥ (x) =
X1Xx2x3 - - -. In addition, let E(x) = cycic2--- = y1y2y3---, where ¢; is 0 or 1 de-
pending on whether f*(x) is in Iy or I, and y, is 01 or 1. Suppose further that
B oy (x) = y,¥,y;- -, where y, is 01 or 1. We show that y, =y, for all n by induc-
tion. If x; = 0, then x = f%(x) € Ipand f'(x) € I;,s0¢co =0, ¢, =1, and y; = Ol.
On the other hand, by the definition of v and (3), x; = 0 implies y; = 01. Similarly,
if x; = 1,thenx € I;,s0 y; =1 and y| = 1. In either case, y; = y,.

Now assume y; = y; fori = 1,...,n — . Since x is not dyadic, there exists an in-
teger j suchthat0 < j <2"~!' —landx € (j/2""", (j + 1)/2"~"), which lies entirely
in Iy or I,. Each application of f sends such a dyadic interval to another dyadic inter-
val. If the left branch of f is applied, its width remains the same, but if the right branch
is applied, the width doubles and the endpoints of the image can both be written with
the denominator 2" 2. Such intervals still fall entirely in I, or I, until they are stretched
to a width of 1. Therefore, upon the (n — 1)st visit of x to /;, this interval has been
stretched to (1/2, 1). If x is in the left half of (j/2"~', (j + 1)/2"~"), then x,, = 0. If
n is even, then upon the (n — 1)st visit to 1, the left half of (j/2"~', (j + 1)/2"~") has
been stretched to (1/2, 3/4). The next application of f sends the iteration of x already
in (1/2,3/4) to I,,s0 y, = 1. But,n even and x, = 0 implies y/ = 1 by (3). Likewise,
n odd implies y, = 01 and y/ = OI. In either case y, = y,. The parallel argument
shows that if x is in the right half of (j/2"~', (j +1)/2"7"), thenx, = 1 and y, = /.
Therefore, we proved that y, = y,. for all n if x is not dyadic.

Suppose x € [0, 1] is dyadic. It is easy to check that E(x) = B o (x) for
x =0,1/2, or 1. If x is dyadic and different from those three, then x = j/2"
in lowest terms with n > 2, and x = j/2" is the midpoint of an interval of the
form (p/2"', (p + 1)/2"~") that falls entirely in I, or I,. Let E(x) = cycicz -+ =
Yi1y2y3 - - - as before, and suppose that B o ¥(x) = y|y,y; - - -. Since the midpoint of
(p/2" ', (p + 1)/2"") is an element of (p/2""', (p + 1)/2"""), an argument that
parallels the nondyadic case shows that y, = y,, but only for k =1,2,...n — 1.
Upon the (n — 1)st visit to 1,, the interval (p/2"~', (p + 1)/2""") is stretched
onto (1/2, 1) and x = j/2" is mapped to 3/4. Let g equal the number of applica-
tions of f required to produce n — 1 visits by (p/2"~', (p +1)/2"7") to I, then
CoCIC -+ Cq = Y1Y2Y3 - -+ Yu—1 With ¢, = 1. Another application of f sends x to 1/2,
s0 ¢,+1 = land y, = 1. Since E(1/2) = (110)*™, E(x) = cocica- -4 1(110)* =
YiYays - Y1 (110)® = yiypy3 -+ ¥, 1(101)*. Thus, if n is odd, B o ¥(x) =
B(x xpx3 -+ x,2110%) = yyiy; -y, 1(101)>® = E(x). Similarly, if n is even
Boy(x) = B(x1xpx3---x,101%) = yiyiy;-- -y, 1101)*® = E(x).

By construction of the following maps

v B
[0,1] — (0,1} — G,
¢ B!

we get DoE =(¢poB ) o(Boy)=¢oy =Idj,. In particular, E is one-to-
one and D is onto. Moreover, for any y € E([0, 1]), there is an x € [0, 1] such that
E(x) =y,s0 EoD(y) = E(D(E(x))) = E(x) =y, thus E o D|go.1) = ldgqo,1-
This ends the proof. [ ]

Theorem 1 states that the encoder and the decoder are not inverses of each other, but
almost. Hence, we cannot identify the open-tent function with its symbolic model the
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golden-mean shift. However, many important dynamical features like periodic points
are still in one-to-one correspondence between the two systems.

Using (4) and D(y) = 221 z;/2!, we can decode any 0-1 sequence in G into a
number in [0,1]. The first example is straightforward, but there are a few subtleties of
decoding as demonstrated in Examples 2 & 3.

EXAMPLE 1. To decode the element (11011)%°, use (4) directly to obtain
D[(11011)*] = 0.1000 = 23/(2* — 1) = 8/15. So, 8/15 is a point of period 5.

EXAMPLE 2. A careless decoding may suggest that D[(1101)>°] = 0.100 = 4/17,
but the odd number of ones in the string 1101 tells us that the even-odd parity is
switched in the second appearance of 1101 in the infinite string (1101)*°. In this
case we must list the repeating string twice to get an even number of 1s. Thus,
D[(11011101)*°] = 0.100011 = 5/9, and 5/9 has period 4.

EXAMPLE 3. What do we do with that final O when decoding (11110)*°? Simply
note that (11110)*° = 1(11101)*°, so D[(11110)*] = D[1(11101)*] = 0.10100 =
19/30.

EXAMPLE 4. What is the point x € [0, 1] such that f"(x) > 1/2 for all n except
when n equals one million? We get the answer by decoding an element of G with the
right properties:

x = D(ll,OOO,OOOOIOO) — d) o B—l[(ll)SOO,OOO(Ol)(ll)OO] — ¢[(10)500,0000(01)00]

(&1 12 1 22
- Z 22%+1 | 10641 T 3 910641 3. 010041

k=0

The encoder E : [0, 1] — G is not onto. Let us find exactly which elements of
G fall outside E([0, 1]). Suppose w € G, but w ¢ E([0, 1]). Let x = D(w) = ¢ o
B~'(w). Both B~!(w) and v (x) are binary expansion sequences of x by the defini-
tions of ¢ and  respectively. But B~!(w) # ¥ (x), for otherwise w = B(B~!(w)) =
B(y¥(x)) = E(x) € E([0, 1]). A contradiction. Since ¢ is almost a bijection except
for the dual representation of the dyadic numbers,

the elements of G that fall outside E([0, 1]) are precisely those elements of G
that correspond through B to the improper binary expansions of the dyadic num-
bers.

It is easy to spot these elements. If y € G begins with a 1, then o ~'(y) = {0y, 1y},
while if y begins with a 0, then o ~!(y) = {1y}. In FIGURE 3 we have an infinite
directed graph for (101)* and its preimages. It shows the complete genealogy of the
ambiguous sequences in G corresponding to the dyadic numbers. An arrow from w to
y indicates o (w) = y.

Since the dyadic numbers are the preimages of 1 under f" for various n and
E(1) = (101)®°, the elements of E([0, 1]) that are preimages of (101)* under o
for various n decode to the dyadic numbers. Notice, however, that o ~'[(101)®] =
{(110)*, 0(101)*} even though f~'(1) = {1/2}. The element 0(101)® ¢ E([0, 1])
and the whole right-hand branch of the directed graph in FIGURE 3 that passes through
0(101)*° lies outside of E ([0, 1]).

The necessary and sufficient conditions for y € G being in E([0, 1]) are that
either y does not have the repeating block (101)*, or, if it does, then it has a 1
Jjust before its repeating block (101)*.
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1011(101)*® 0111(101)® 1111(101)® 010(101)® 110(101)®

011(101)*® 111(101)*° 10(101)*°
Outside
11(101)*>° 010> E([0,1))

»
1(101)® —— (10H)™®

N

ornH*

Figure 3 Preimages of (101)* under o”

None of the points in FIGURE 3 except the bottom three are periodic though all of
their orbits eventually enter a periodic cycle. Such points are called eventually periodic
points. Now we can describe all the periodic points and eventually periodic points of
the open-tent function as our main result.

Periodic points and eventually periodic points

THEOREM 2. Let f be the open-tent function on [0, 1], and let (G, o) be the
golden-mean shift.

1. There is a period-preserving bijection between the set of all periodic points in
(10, 11, f) and those in (G, o). In particular, we can locate all periodic points
of [ precisely.

2. The number of period-n points of f equals the Lucas number L,.

3. The only 3-cycle of f consists of the three dyadic numbers 0 EA /2 EN 1 EA 0. All
other dyadic numbers in |0, 1] are eventually period-three points with their orbits
eventually ending with the 3-cycle above. The converse is also true.

4. A number x € [0, 1] is a periodic point of f if and only if either

(a) x is a rational number that can be written as a fraction with an odd de-
nominator (this includes 0 and 1), or
(b) x is a rational number that can be written in the form 1/2 + j/(2k) for

some nonnegative integer j and odd positive integer k (this includes 1/2
and 1).

5. A number x € [0, 1] is a periodic or eventually periodic point of f if and only if x
is rational.

Proof. (1,2). By design, if E(x) = cocic; -, then E(f(x)) = cjcac3 - - -. Hence,
E o f = 0 o E. This along with the fact that E is one-to-one (Theorem 1) implies
that f"(x) = x if and only if 6" (E(x)) = E(x). Thus, x has period n under f if and
only if E(x) has period n under o. Since none of the elements of G that fall outside
E([0, 1]) are periodic (FIGURE 3), E serves as a bijection between the period-n points
of ([0, 1], f) and those of (G, o). So, the number of period-n points of [0, 1] under f
equals the Lucas number L, by (1). To prove (3), observe that the only prime-period-
three elements in G are (011)*°, (110)*°, and (101)*°. They decode to the only prime-
period-three elements 0, 1/2, and 1 respectively in [0, 1]. The proof of Theorem 1
implies the rest. We leave the proofs of (4) and (5) as exercises in the application of
decoding. [ ]
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TABLE 1 lists the period-n points of (G, o) and ([0, 1], f) forn =1,2,3, 4.

TABLE 1: Periodic points of the open-tent function

Prime
Period E(x) X
1 1% 2/3
2 01)*>, (10)> 1/3,5/6
3 (011)°°, (110)*°, (101)*° 0,1/2,1
4 (0111)*°, (1110)°°, (1101)°°, (1011)*>°, 2/9,13/18,5/9, 8/9

Let g, denote the number of points in [0, 1] having prime period » under f.Ifk < n
and k divides n, then the g, elements of [0, 1] with prime period k are counted in L,
along with the g, elements with prime period n. Thus,

qn=Ln_ Z k-

k|n,k<n

With the help of a computer, we calculate some values of g, in TABLE 2.

TABLE 2: Number of period-n points

No. of Period n Pts. No. of Prime Period n Pts.

n L, qn

1 1 1

2 3 2

4 7 4

5 11 10

10 123 110

20 15,127 15,000

25 167,761 167,750
50 28,143,753,123 28,143,585,250

100 792,070,839,848,373,253,127  792,070,839,820,228,485,000

We should be aware of the limitations of a computer for such a seemingly simple
process as calculating the iterations of f at some point x. Try using a spreadsheet or
mathematical software that uses floating-point arithmetic to investigate this; you will
find that all orbits of f end with the 3-cycle0 — 1/2 — 1 — 0. Why? The computer
uses a finite binary expansion to represent the seed number. In doing so, it has rounded
the seed to a dyadic number. By Theorem 2, the orbits of all dyadic points end in that
3-cycle. This phenomenon is quite unique to the open-tent function. It is no longer true
if we just move the top of the tent a bit higher or lower! Interested readers may study
the orbit diagram (by Maple) in FIGURE 4 of the following family of functions with
the parameter c:

foex+1,2 x<1/2 14++/5
fC(x)—[(1+c)(1—x) x> 12 for —1<c=<———.

The orbit diagram plots the parameter ¢ with a gap of 0.02 on the horizontal axis
versus the eventual orbit of the critical point 1/2 under f. on the vertical axis. A
different family that contains the open-tent function is discussed by Bassein [2].
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Figure 4 Orbit diagram of x = 1/2 under a modified tent function f;

FIGURE 4 presents a familiar picture of transition to chaos through period-doubling
bifurcations [4, Ch. 8]. For —1 < ¢ < 0, the orbit of x = 1/2 tends to an attracting
fixed point. At ¢ = 0, the family has a period-doubling bifurcation where the attracting
fixed point turns into a repelling fixed point and gives birth to an attracting 2-cycle.
For ¢ > 0, the orbit of 1/2 tends to an attracting 2-cycle until ¢ ~ 0.617 when another
period-doubling bifurcation happens that gives birth to an attracting 4-cycle. The dark
region of the diagram shows that the orbits of x = 1 /2 under corresponding f. are
trapped in one or more vertical intervals, jumping back and forth chaotically. When
¢ =1, f. is the open-tent function, and the orbit of 1/2 is represented by the three dots
that appear on the vertical line ¢ = 1. The reason we can see these three dots is not
because it is an attracting 3-cycle, but because all numbers are rounded by computer to
dyadic numbers that eventually enter the 3-cycle 0 — /2 — | — 0 (see FIGURE 3).
The open-tent function is unique in this family { f.}. For ¢ just off from I, the orbit of
1/2 under f, is chaotic. When ¢ > (I + \/_)/2, the orbit of 1/2 escapes, so we see
the golden mean one more time to end the orbit diagram! We still do not know how to
locate all the periodic points of f, forall ¢ # 1 as we do for the open-tent function.
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Fibonacci Numbers and the Arctangent
Function
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This note provides several geometric illustrations of three identities involving the arc-
tangent function and the reciprocals of Fibonacci numbers. The Fibonacci numbers are
definedby Fy =0, F; = 1,and F,, = F,_; + F,_, forn > 1. The following identities
link the Fibonacci numbers to the arctangent function. Only the first is evident in the
literature [1, 2, 3].

1 1 1
arctan { — ) = arctan + arctan (1)
(in> <F2i+l> <F2i+2>
arctan = arctan arctan
Friqr Frin Foitq
1 2 1
arctan | — ) = arctan + arctan 3)
Fyi Fipo Fiys

Identities (1)—(3) can be proven formally using Cassini’s identity [1, p. 127]

Fl., = FFeo + (=1
and the addition formula for the tangent function. Interested readers are invited to do
SO.

The following six diagrams illustrate special cases of equations (1)—(3). FIGURE 1,
a representation of Euler’s famous formula for 7 [4, 5], illustrates (1) for i = 1. One
can see that ZABD plus ZDBC is equal to ZABC.

C

AN

Figure 1 % =arctan(1) = arctan(%) + arctan(%)

FIGURE 2 illustrates (1) for i = 2, using the larger squares to form the arctangent
of 1/5 and the smaller squares being used to form the arctangents of 1/3 and of 1/8.

The two diagrams in FIGURE 3 illustrate (2) for the valuesi = 1 andi = 2.

The diagrams in FIGURE 4 illustrate equation (3) for the values i = 1 and i = 2.
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AN

Figure 2 arctan(§) = arctan(<) + arctan(g)

il

Figure 3 arctan(3) = arctan(}) + arctan(g); arctan(}) = arctan(%) + arctan(5};)

Figure 4 arctan(1) = arctan(%) + arctan(%); arctan(%) = arctan(];) + arctan(-]1—3))
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Hypercubes and Pascal’s Triangle:
A Tale of Two Proofs
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The entries of the nth row of Pascal’s triangle consists of the combinatorial numbers

@ @ @ (n i2)’ (n ’ 1)’ (Z) where (D - #'—kw

These numbers are called the binomial coefficients, because they satisfy the binomial
theorem:

(I+0"=Y" (Z)xk. )

k=0

Upon setting x = 1, we obtain

2 = Z (Z) ?)

Differentiating both sides of (1) with respect to x, we have

n(l+x)"' = y k(n)xk‘l = (n) +2(n)x + 3<n)x2 + - +n(n>x”_1. 3
kz:l« k 1 2 3 n

Setting x = 1, we finally obtain the well-known identity [4, p. 11],

(o)) o

This last identity can also be proven without calculus. For a typical short proof, see
Rosen [9, Section 4.3, Exercise 51] or Buckley and Lewinter [3, Section 1.4, Exer-
cise 9].

We shall prove identity (4) using graph theory. In contrast to the previously men-
tioned proofs, which suggest that (4) is an algebraic accident, our approach here
will count a combinatorial object in two different ways, thereby yielding insight
into why the identity is true. The hypercube, Q,, is an important graph, with ap-
plications in computer science [1]-[3], [S]-[8]. Its vertex set is given by V(Q,) =
{(x),x2,...,x,) | x; =0o0r1;i =1,2,...,n},i.e., each vertex is labeled by a binary
n-dimensional vector. It follows that |V (Q,,)| = 2". Vertices x = (x1, X», ..., x,) and
y = (1, Y2 ..., ¥s) are adjacent if and only if Z;’zl |x; — y;| = 1, from which it
follows that Q, is n-regular. Since the degree sum is n2", we find that Q, has n2"~!
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edges, that is, |[E(Q,)| = n2"~'. The distance between vertices x and y is given by
Yo' |xi — yil, that is, the number of place disagreements in their binary vectors.

Calling the vertex (0, 0, ..., 0) the origin, define the ith distance set D;, as the set
of vertices whose distance from the origin is i. Then foreachi =0,1,2, ..., n, we
have D; = {(xy, xa, ..., x,) | Y_i_, x; =i}, that is, D; consists of those vertices with
exactly i 1s in their binary n-vectors. Moreover, we have |D;| = (7). The fact that the
D;s partition V (Q,,) demonstrates Equation (2) rather nicely.

Now observe that the induced subgraph on any D; contains no edges, since all
of the binary vectors of the vertices in D; contain the same number of Is. (If two
vertices are adjacent, the number of Is in their binary vectors must differ by exactly
one.) Furthermore, if |i — j| > 2, then if x € D; and y € D;, it follows that x and
y are nonadjacent, that is, xy ¢ E(Q,). Then all edges are of the form uv, where
ueD; andve Dy, fori =0,1,2 ..., n— 1. Since each vertex in D;,| has i + 1
Is in its binary vector, it is adjacent to exactly i + 1 vertices in D;. (These vertices
are obtained by replacing one 1 by 0 in the binary vector of the chosen vertex in
D;.) This implies that the number of edges with endpoints in both D; and D, is
(+DIDj| =G+ 1)(&,). It follows that the total number of edges in Q,, is given by

S G+ 1)(;1,)- Finally, since |E(Q,)| = n2"~", we are done with the proof of (4).
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Taylor’s formula with integral remainder is usually derived using integration by parts
[4, 5], or sometimes by differentiating with respect to a parameter [1, 2]. According
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to M. Spivak [7, p. 390], integration by parts is applied in a “rather tricky way” to
derive Taylor’s formula, using a substitution that “one might discover after sufficiently
many similar but futile manipulations”. In this MAGAZINE, Lampret [3] derived both
Taylor’s formula and the Euler-Maclaurin summation formula using a rather heroic
application of integration by parts.

We derive the remainder formula in a way that avoids tricks and heroics. The key
step is changing the order of integration in multiple integrals, a topic that many stu-
dents in an analysis class will benefit from reviewing. This derivation has almost cer-
tainly been found many times before [6], however, most people seem to be unaware
of it.

The Taylor formula Suppose that a function f(x) and all its derivatives up to n + 1
are continuous on the real line. Then Taylor’s formula for f(x) about O is

" (n)
f) :f(0)+f'(0)x+£2('—0)x2+...+ fn'(O)

x" + R(x), (1)

where the remainder, R(x), is given by

R(x) = i'/ x—w)"f"Dw) du.
n' Jo

Our derivation is based on the following simple idea: Try to reconstruct f by inte-
grating f”*V, n + 1 times. This approach is suggested by the case n = 0, when (1)
is merely the fundamental theorem of calculus. For notational simplicity, we prove (1)
for only n = 2; however, the general case is similar. Thus, consider

R(x) := /X/wfvf(3)(u)dudvdw. 2)
0 JO 0

Now let’s evaluate this integral in two ways. The first way is by direct integration using
the fundamental theorem of calculus three times:

~ 2
R(x) = f(x) = £(0) — xf'(0) — %f”(oy (3)

The second way to integrate (2) is by interchanging the order of integration:

| [ rowanan=[" [* rowavau = ["w-ws¥wa.
0 0 0 u 0

Interchanging the order of integration again gives
/ {/ / f(S)(u)dudv}dwz/ [/ (w—u)f(3)(u)du}dw
0 o Jo 0 0
=/ / (w—u) f ) dwdu
0 u

= l./x(x —u)? ) du. 4)
2 Jo

Equating (3) and (4) yields the Taylor formula (1) for n = 2.
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The Swiss mathematician, Jakob Bernoulli (1654—1705), successfully sought a general
method for summing the first # kth powers for arbitrary positive integers n and k. Let
us define

Scmy=Y " =142+ 4t
j=l
Define the average of the first n kth powers by

\
i (n) = A(n)-
n

We pose and answer the following natural question: For which values of #n and & is
i (n) an integer? Our answer, although it does involve the denominators of Bernoulli
numbers, which undergraduates may not have seen, relies primarily upon elementary
divisibility arguments.

Background In his Ars Conjectandi, published posthumously in 1713 and dedi-
cated primarily to the theory of probability, Bernoulli presented a recursive solution
for S, (n). It states thatfork > 1,

k
+ D =+ D+ (k;r ])S_,(n),

=1

where the binomial coefficients are defined as usual:

(k+1>_ k + 1)!
i) k1=
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Furthermore, if we define what are now called the Bernoulli numbers by
k=1
k+1
Bo=1 and (k+ 1)B =—Z( * )B,- fork > 1,
=0\
then for k£ > 1, the sums Sy (n) satisfy:
= (k1 k+1—j
(k+1)Se(n) = ( , )B,-(n + 1)k
= J
Jj=0

The Bernoulli numbers are the rational coefficients of the linear terms of the
(k + 1)st degree polynomials, Sx(n — 1). For example,

Som—1)=1n—1,

1, 1
Sl(n—l)=§n —En,

1 1 1
S,(n—1) = §n3 — Enz + gn,

1 1 1
Ss(n—1)=-n*—=n*+ -n*>+0n, and

4 2 4
1 1 4 1
San—1)= =n’ — —n* — —n* — —n.
s =D =gn =o' = 5~ 3"
It follows that By = 1, B, = —1/2, B, = 1/6, B; = 0, and By = —1/30. In fact,

Byi+1 = Ofor all £ > 1. More compactly, we can define the Bernoulli numbers by the
following power series:

x 2. Byxk
e —1 _Z k!

For even k > 2, we write B; = Ni/D,, where N; and D, are relatively prime and
Dy > 1. The numerators N, have played a significant role in number theory due largely
to their connection with Fermat’s Last Theorem. A prime p is a regular prime if p does
not divide any of the numbers N,, N4, ..., N,_3. (The only irregular primes less than
100 are 37, 59, and 67.) In 1850, Ernst Kummer proved that Fermat’s Last Theorem
is true for every exponent that is a regular prime. Of course, as of 1995 Andrew Wiles
has proved Fermat’s Last Theorem in toto.

The denominators D, have played a less significant role in mathematics even though
they can be clearly described. The 1840 Von Staudt-Clausen Theorem states that for k
even, Dy is the product of all primes p with (p — 1) | k. An interesting consequence
is that Dy is square-free for all k. The theorem was proven independently (and nearly
simultaneously) by the two mathematicians.

Examples We begin by considering a few examples, deriving results directly using
congruence relations.

* k= 1: We have 1(n) = (n + 1)/2. Hence, w1(n) € Z if and only if n is odd. This
is an exceptional case due to the fact that B, # 0.

* k = 2: In this case, uy(n) = (n + 1)(2n + 1)/6. We claim that w,(n) € Z if and
only if n is not divisible by 2 or 3. First, suppose that n is not divisible by 2
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or 3. Clearly, (n + 1)(2n + 1) is even. If n = 1(mod3), then 3 | (27 + 1) and if
n =2(mod3),then3 | (n+ 1).Inanyevent, 6 | (n + 1)(2n + 1) and so u»(n) € Z.
Second, suppose that # is divisible by either 2 or 3. If 2 | n, then (n + 1)(2n 4 1) is
odd and hence is not divisible by 6. If 3 | n, then n = 3k for appropriate integer %,
and (n + 1)(2n 4+ 1) = 3k + 1)(6k + 1) = 18k> + 9k + 1, a number not divisible
by 3 (nor by 6).

* k = 3: We have u3(n) = n(n + 1)?/4. We claim that w3(n) € Z as long as n is not
congruent to 2 modulo 4. If n is congruent to 0, 1, or 3 modulo 4, then 4 | n(n + 1)
However, if n = 2(mod4), then n(n + 1)> = 2(mod 4), and so 4 does not divide
n(n+ 1)

* k = 4 In this case, us(n) = (n + 1)(2n + 1)(3n*> + 3n — 1)/30. We claim that
wa(n) € Z if and only if n is not divisible by 2, 3, or 5. Suppose that » is rela-
tively prime to 30 (equivalently not divisible by 2, 3, or 5). Then n + 1 is even and
(n + 1)(2n + 1) is divisible by 3. Furthermore, (n + 1)(2n + 1)(3n*> +3n — 1) =
6n* + 151° 4 10n> — 1 = n* — 1(mod 5). But by Fermat’s Little Theorem, n* — | =
O(mod5) andso5 | (n + 1)(2n + 1)(3n* + 3n — 1). Hence, u4(n) € Z in this case
as well.

In the other direction, if 2 | n, then (n + 1)(2n + 1)(3n*> 4+ 3n — 1) is odd and
not divisible by 30. If 3 | n, then (n + 1)(2n + 1)(3n”> + 3n — 1) = —1(mod 3) and
so is not divisible by 30. Finally, if 5 | n, then (n + 1)(2n + 1)(3n> 4+ 3n — 1) =
—1(mod 5) and so is not divisible by 30.

These examples hint that the situation is very different for odd and even values
of n. We develop our main theorem in two sections. Only the even case involves the
Bernoulli numbers. In both parts, we use the easily noted fact that p¢, (n) is an integer
if and only if Sy (n) = O(modn).

An “odd” theorem

THEOREM 1. For odd numbers k > 3, w.(n) is an integer if and only if n #*
2(mod 4).

Proof. Suppose k isodd and k > 3. Since (n — a) = —a*(modn) for all a, we can
pair up the terms of S, (n) from the outside in.

(a) If n is odd, then

Sim) =1+ =D+ 2+ =2+

S (COREII

=1 =14+ @2=25 4+ ... 4+0=0(modn).

(b) If n is even, then there are two subcases depending on whether or not # is divisible
by 4.
(i) If n = 0(mod4), then

Sc(m) =1+ (n = DT+ 2+ (n = 2" + -
(ORI INOE

= O(modn) since k > 1 and g is even.
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(ii) If n = 2(mod 4), then

Sc(m) =1+ (- D1+ + (-2 +---
B (EORED )
= (%)k (modn).

But n/2 is odd and so (n/2)* is odd. Since n is even, (n/2)* is not congruent to
O(mod n). [ |
An “even’” more interesting theorem

THEOREM 2. For even numbers k > 2, i (n) is an integer if and only if n is rela-
tively prime to Dy.

Proof. The Von Staudt-Clausen theorem [1, Theorem 118] states that the kth
Bernoulli denominator can be written as a product of primes as follows:

Dk = 1—[ pP-

p prime and p—1|k

To prove our result it must be shown that S;(n) = O(mod n) if and only if for every
prime p dividing n, that p { D,. By Von Staudt-Clausen it suffices to establish that

Sx(n) = 0(mod n) iff for every prime p that divides n, (p — 1) t k. €))

For the sake of completeness, we state and prove the following easily established
result [1, Theorem 119]:

LEMMA 1. For any prime p,

p
2 m*

m=1

—I(mod p) if (p—1) | k

=0(mod p) if (p — 1) t k. (2)

Proof of Lemma 1. If (p — 1) | k, then k = (p — 1)r for some integer r. Hence,
for m < p, m* = (m”~")" = 1(mod p) by Fermat’s Little Theorem. It follows that

b _,m=p—1=—1(modp).

If (p — 1) t k, then let g be a primitive root of p. It follows that the set {g, 2g, ...,
(p — 1)g}isidentical to the set {1, 2, ..., p — 1} of reduced residues modulo p. Hence

P\ (mg)* = Y7~ m*(mod p), and so (gF — 1) 32} mk = 0(mod p).

m=

But g* is not congruent to 1(mod p) since g is a primitive root mod p. Thus

P _, m* = 0(mod p). This establishes Lemma 1. ]

Returning to the proof of our main result, it is convenient to first assume that 7 is
square-free.

We establish (1):

(<) Suppose that for all p dividing n that (p — 1) { k. Choose a prime p | n. By (2),

p
Z m* = 0(mod p).

m=1
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Similarly,

(r+1)p n
Z mf=0(mod p) for0<r < — —1.
m=rp+1 P
z_|
Hence Sy(n) =Y ,_ m* =Y Z::;;)i] m* = O(mod p). But p arbitrary
and n square-free implies that S;(n) = O(mod n).

(=) We prove the contrapositive. Suppose there exists a prime p | n such that
(p—1D |k By(@2

r
Y " m* = —1(mod p).
m=I

Similarly,
(r+1)p n
> mt=—-lmodp) forO<r<=——1.
m=rp+I| p
Hence S;(n) = —n/p(mod p), which is not congruent to O(mod p) since p and

n/ p are relatively prime. Thus S (n) is not congruent to O(mod ).
Now suppose that n is not square-free.

(<) Suppose that for all p dividing n that (p — 1) { k. If there is a prime p exactly
dividing n (that is, p | n, but p* does not divide n), then as in the square-free
case, Si(n) = 0(mod p).

Now let p be a prime with p“ || n with a > 2. (The notation p“ || n means
that p* | n and p**' {n.)

LEMMA 2. Let p be a prime with (p — 1) t k. Then
25+ 4 (p”)k = 0(mod p®).
Proof of Lemma 2 (Induction on a). If a = 1, then
1“ + 28 + - + p* = 0(mod p) by (2).
Assume that the lemma holds for a — 1, namely that
1425 4o+ (p* )k = 0(mod p*™).

Now consider S (p®) = er;ol j”:ll (rp®~" + j)k. The binomial theorem im-

plies that
ALk .
(rpa—l + ])k — Z (i>r1p(a_l)ljk_l-
i=0
Hence
YA S A o
S =33 (.)r'p“‘”'jk". 3)
r=0 j=1 i=0 \}
Fori > 2, p@ D" = 0(mod p*) and so all terms of (3) withi > 2 are congru-

ent to O(mod p?).
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. — a—1 . —
Fori =0,Y"", b = S(pth.
But S (p°~!') = 0(mod p*~!) by our inductive hypothesis. Hence

p—1pi!

Z Z j* = 0(mod p%).
r=0 j=1
Fori =1,
p=1p¢~! p-1
Z Z krpa—ljk—l — Zkrpa—l . Sk_l(p(l—l)
r=0 j=1 r=0
-1
= kS (ph - p*t -lp )p'
2
But S;_1(p*') € Zand 2| (p — 1). Thus
p=1po”!
2> krpt! T = 0(mod p*).
r=0 j=1
Therefore, Sy (p?) = 0(mod p*) and Lemma 2 is proven. [ |
In a manner analogous to Lemma 2, it follows that
(r+1)p¢ n
> m*=0(modp") for0<r=<——1.
m=rp%+1 p

Hence S;(n) = 0(mod p?) for any p | n with p* || n and a > 1. It follows that
Sy (n) = 0(mod n).
(=) A slight modification of the square-free proof works here, as follows.

On the one hand, if there exists a prime p || n such that (p — 1) | &, then
by (2), >.P_, m* = —1(mod p). Hence Sy(n) = —n/p(mod p), which is not
congruent to O(mod p) since p || n. Thus n t S;(n) as in the square-free case.

On the other hand, suppose there exists a prime p with p® || n with a > 2
and (p—1) | k. By (2), >."_ m* = —1(mod p). Thus >."_ mt = (rp — 1)
(mod p?) for some r with 1 < r < p®!. But then S;(n) = n/p(rp—1) =
—n/p(mod p). Hence Si(n) is not congruent to O(mod p®) and so n { Si(n).

This completes the proof of part (2) and establishes the theorem. [ ]
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Proof Without Words:
Viviani’s Theorem with Vectors

The sum of the distances from a point P in an equilateral to the three sides of the
triangle is independent of the position of P (and so equal to the altitude of the triangle.)

laf =181 = |y
a+pB+y=0
«-5+B-84y-8=0
r=—rM+G6-sHY+@t—-t)=0
r+s+r=r'+s 41
C

B

—HANS SAMELSON
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Let 7 be 3
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And he (Hirum of Tyre) made a molten sea, ten cubits from the one brim to the
other: it was round all about, and its height was five cubits: and a line of thirty
cubits did compass it round about. 1 Kings 7:23
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The literal interpretation of this Biblical passage is that Hirum constructed a hemi-
spherical basin that had a diameter of 10 cubits (a cubit is approximately one half of a
meter) and had a circumference three times that value. This ratio of the circumference
of a circle to its diameter apparently contradicts results of the works of Archimedes
who established that the ratio of the circumference of any circle to its diameter is be-
tween 3% and 3%. Since Archimedes provided a convincing argument for his values
we are inclined to accept them as true and regard the numbers given to us in First
Kings as approximate values whose error is due to rounding off. In this paper we do
not write this off to a rounding error, but rather identify a setting where 3 is the correct
value.

Archimedes’ results were obtained in Euclidean geometry. Using alternate geome-
tries we will establish that the ratio of the circumference of a circle to its diameter
may take on a continuum of values, including three. In the next section we will discuss
how Archimedes first determined his values. Then we will show how the ratio varies
in spherical geometry. Finally, we discuss the possible values in hyperbolic geometry.

The results of Archimedes The computation of  has a long history [2]. Archimedes
[1] first considered a regular polygon as inscribed within a circle and then as circum-
scribed about a circle, and thus was able to compute a lower approximation and an
upper approximation for the ratio of the circumference of a circle to its diameter. He
observed these ratios up to a polygon with 96 sides, and thus was able to conclude
that the ratio of the circumference of any circle to its diameter is between 3% and 3%.
Using Archimedes’ technique and modern trigonometry we can compute even better
approximations for this ratio.

Let us assume that a circle is divided into 360 degrees, and consider regular poly-
gons having » sides (in our diagrams n = 6), where the length of each of the sides is 1
unit.

~—_ 1

Figure 1 A circle circumscribed and inscribed by a regular polygon

From the easy observation that the measure of the angle « is 360°/n, we find that
the measure of the angle g8 is 90°(n — 2)/n. Now using the law of sines, we can see
that the diameter of the circumscribed circle would be

5. sin(90° - (n — 2)/n)
sin(360°/n)

The diameter of the inscribed circle is easily calculated to be

tan(90° - (n — 2)/n).

We see that the ratio of the circumference of the circle to its diameter lies between
ratio of the perimeter of the inscribed polygon to the circle’s diameter and the ratio of
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the perimeter of the circumscribed polygon to the circle’s diameter. For the remainder
of the paper we will follow the universally accepted convention of using 7 as the ratio
of the circumference of a circle to its diameter in Euclidean geometry. Computing
the ratio of the perimeter of each polygon to the diameter of the circle, we derive the
inequality

. sin(360°/n)
"2 sin00° (n — 2)/n)

<m <n-cot(90°(n — 2)/n).

We can now take the limits as n approaches infinity. The results yield what we
already know, that each ratio approaches the same value, which is approximately
3.141592654.

The ratio 7 in spherical geometry From First Kings the ratio of the circumference
to the diameter is easily computed to be 3. For the sake of academic curiosity let us
assume that the ratio of the circumference to the diameter of the “molten sea” was
indeed supposed to be 3. How can this be? An answer lies in the geometry under
consideration. Archimedes proved his results in Euclidean geometry, the geometry of
plane or flat surfaces. But suppose we were to use spherical geometry. Can we then
produce circles in which the ratios of the circumferences to the diameters are indeed
exactly 37

In Euclidean geometry, the surface upon which measurements are made is the plane.
In spherical geometry, the universal surface upon which measurements are made is the
sphere. To perform calculations on the sphere we imagine the sphere embedded in
three-dimensional Euclidean space. We may then use the results of Euclidean geome-
try to compute measurements on the sphere.

In the spherical setting, the ratio of circumference to diameter need not be ; in
fact, it is easy to see how to produce a circle whose circumference-to-diameter ratio
is 2. Simply choose the circle to be a great arc (equator), then the diameter of the circle
(the shortest path between two antipodal points on the circle) is half the length of the
great arc. So the ratio of the great arc to 1/2 of a greatarcis 1/(1/2) = 2.

Since we now know that on a sphere the ratio of a circumference of a circle to its
diameter need not be 7, we turn our attention to all possible values for this ratio.

Let a circle with circumference C and diameter 2r lie on a sphere with radius R.
Let o be the center of the circle, B the center of the sphere, y a point on the circle, and
4 the center of the circle as viewed in Euclidean geometry. Call p the Euclidean radius
of the circle in the planar cross-section shown, and 6 the angle ZaBy, as in FIGURE 2.

Figure 2 A circle on a sphere
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We have r = RO, sinf = p/R, and 2pmr = C, so that p = Rsin6 and 8 = r/R.
Thus

C = 2nRsin% = 2ngsin0.

Let IT denote the ratio of the circumference of a circle to its diameter, which we
represent as a function of 8. Since 2r is the diameter of the circle on the sphere, we
can compute
C(9) sin @

=7—
2r 0

We now can compute [1(7/2) = 2, as we noted earlier. We can also compute
[T(x /6) = 3, which is the ratio given in First Kings. We also note that the limiting
value as the angle 8 approaches 0 is

o) =

. . sinf
lim I1(#) = 7 lim — = 7.
6—0 6—0

We may allow 6 to grow larger than 7 /2 and define the diameter of the circle to
be twice the radius, which is the length of the arc from a point on the circle to the
center, which we might as well call the North Pole. The graph of I1(6) = msin(6)/6
will represent all possible values for IT on the sphere.

—16/—‘8\—\% 201 W/é\ﬁ)

Figure 3 The graph of T1(8) = 7 (sin(6))/6

As the terminus of angle 0 passes the South Pole we will measure the circumference
in the opposite direction, hence yielding the negative values for IT.

Also, we see that limg_, 1o, 7(sin0)/60 = 0. As 6 grows larger the radius is wrapped
once around the sphere for every multiple of 277, but the absolute value of the circum-
ference will never grow larger than the length of the equator.

The graph of our function suggests that a minimum value for IT occurs near +4.5.
The standard calculus technique of setting the first derivative of I1(8) = n(sin8)/6
equal to O yields the following results:

6 cos@ — sin6@

ne)=n 2 =0= tanf =0,
sothat 6 &~ £4.493409458. We thus compute the minimum value to be approximately
in 4.493409458
I1(4.493409458) = 7 Sn 2P0 6824595706,

4.493409458
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Thus we may conclude that for spherical geometry the ratio of the circumference of a
circle to its diameter ranges over the values

—.6824595706 < I1 < w = 3.141592654.

If we return to the values given to us in First Kings we may compute the size of
the sphere on which the measurements of the molten sea are made. Using the equation
C =2nRsinr/R, we solve for R when C =30 andr = 5:

.5 15 .5
30=27Rsin— or — = Rsin—.
R b4 R

‘We have no closed form solution for this equation, but the function

F(R) = Rsi <3>—E
s Sin R

T

is a continuously differentiable function for R > 0, so Newton’s method would pro-
duce an accurate approximation. This takes only a few seconds using computer pro-
grams such as Maple or Mathematica, and we find that R = 9.549296586 cubits. Thus
a circle at latitude 60° on a sphere of radius 9.549296586 cubits will have a circumfer-
ence of 30 cubits and a diameter of 10 cubits.

The ratio 7 in hyperbolic geometry Spherical geometry is not the only alternative
to the Euclidean plane. Any smooth two-dimensional surfaces in R* might do just as
well. Any such surface has an intrinsic measurement of curvature, which gives us an
idea of how curved the surface is at each point. The curvature, or more precisely the
Gaussian curvature, is computed as the product of two other quantities called the prin-
cipal curvatures at a point. These principal curvatures are the maximum and minimum
curvatures of the collection of one-dimensional arcs through that point. For a circle the
curvature is 1 /R where |R| is the radius. We comment that R may be positive or neg-
ative depending as to whether we make the measurement from a vantage point inside
the circle or outside the circle. Since the curvature of every arc on a sphere through
any given point is 1/R where |R| is the radius of the sphere, we have the curvature of
the sphere to be the constant K = 1/R?, which is always positive.

It is possible for surfaces to have negative curvature. The saddle point of a hyper-
bolic paraboloid is such an example. Since the surface is curving in a concave fashion
in one direction and a convex fashion in the other direction, the maximal principal
curvature will be positive and the minimal principal curvature will be negative. The
Gaussian curvature at the saddle point is thus the product of a negative value and a
positive value, which must be negative. O’Neill [3] is one standard reference.

OB 6 S o 0T
&, GRS
S o" s
2950552
CL7 7

Figure 4 The hyperbolic paraboloid
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We may now consider a space where at every point the principal curvatures are 1/R
and —1/R, and hence the Gaussian curvature is the negative value K = —1/R? =
1/(i R)?. We may consider this space to be a pseudo-sphere with an imaginary radius.
The geometry on this space is known as hyperbolic geometry.

We can replace R with iR in our development of the function IT(0) to get the
corresponding formulas for hyperbolic geometry.

C =2miR sin_L where r =6.
iR R

Thus, we get a formula reminiscent of the spherical ratios,

sin & . sin(—i6)
7 =2wir———.

C =2mir

Apply the identity sinf = (e’® — e~)/2i, to give us

—i%0 _ ,i% 9 -6 ;
e —e e’ —e sinh 6
C=2nrir———— =2nr— =
TTir 0 r T 2nr
Thus
C sinh
ne)=—= .
O =5 =77

Figure 5 The graph of I1(8) = n(sinh)/6

The graph of I1(f) = w(sinh6)/6 in FIGURE 5 reveals that IT takes on values
greater than 7 in hyperbolic geometry. Easy limit computations produce

. sinh . sinh 6
lim =7
6—0 ’] [

So we may conclude that, in hyperbolic geometry, IT takes on all values greater than 7.
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Conclusion The ancient Hebrews were certainly unaware of alternate geometries
and were more concerned with the spiritual aspects of their lives than mathematical
precision. Since it is highly unlikely that they would choose a sphere of approximately
9 meters in diameter on which to make their measurements, we can rationally con-
clude the discrepancies between First Kings and Archimedes is due to a very coarse
approximation. But it is entertaining to realize that these measurements can be made
exact by using the appropriate geometry.

Archimedes did not know the formal limit concept we use today, but he most surely
knew the intuitive concept. Today the exact value of 7 is known to be the limit of the
sequence produced by Archimedes. It is interesting to note that 7 is the limit of the ra-
tio of circumferences of circles to their diameters in both the spherical and hyperbolic
geometries. But this should not be surprising, since the limit is taken as the central
angle approaches 0. If we imagine that the diameter of the circle is held constant, then
the radius of the sphere or pseudo-sphere must approach infinity and the curvature ap-
proaches (. Thus the Euclidean plane can be thought of as a sphere or pseudo-sphere
with curvature 0.

Using our three geometries, 7 can be assigned any positive real value that you
want, and even some negative values. We find it compelling to ponder the possibility
of a geometry that would allow all negative values.
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(continued from page 247)

circle. Thus, no points on the curved parts of the convex hull belong to any of the
arcs whose lengths we are summing. Because the curved parts of the convex hull
can be translated together to form a unit circle, their total length is 2z. Thus, our
bound is improved to 2(n — 1)r. Combining this with our previous information,
we have

2

I<i<j<n

0:0, <2(n—1m.

Dividing by 8 yields the desired inequality.
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Proposals

To be considered for publication, solutions should be received by November 1,
2003.

1672. Proposed by Arpdd Bényi, University of Kansas, Lawrence, KS, and Mircea
Martin, Baker University, Baldwin City, KS.

Let f and g be odd functions that are analytic in a neighborhood of 0. Given that
f'0)=g'©0) #0, fP0) = gP(0) #0,and 0 # (0) # g™ (0) # 0, evaluate

im fx) —gx)
x=0 f=1(x) — g~ (x)’

where A~ denotes the inverse of the function .

1673. Proposed by P. Ivady, Budapest, Hungary.

. 2
sin’ x w2 —x2

3 < 2 2]
X T+ X

1674. Proposed by H. A. Shah Ali, Tehran, Iran.

Prove that for0 < x < 7,

Giventhat0 < x; < x < ... < x,, and x,4+; = x;, prove that
n
Xy — X
Z k k+1 >0
=l 1 + X Xp41

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected,
succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet.

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of Math-
ematics, Iowa State University, Ames, IA 50011, or mailed electronically (ideally as a IKIRX file) to
ehjohnstQiastate.edu. All communications should include the reader’s name, full address, and an e-mail
address and/or FAX number.
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1675. Proposed by Michael Woltermann, Washington and Jefferson College, Wash-
ington, PA.

Let ABC be a triangle, and let XI} EE‘ C"Z respectively, be the arcs of its circumcir-
cle subtended by sides AB, BC, CA. (The arcs are defined so that any two of the three
arcs intersect in just one point.) Let X, Y, Z, respectively, be the midpoints of AB, BC,
CA, and let X', Y’, Z', respectively, be the reflections of X, ¥, Z in sides AB, BC, CA.
Triangle X'Y'Z’ is called the Fuhrman triangle of triangle ABC, and the circumcen-
ter F' of triangle X'Y’Z’ is the Fuhrman point of ABC. Let I and N be the incenter
and nine point center, respectively, of triangle ABC. Prove that N is the midpoint of
segment /F.

1676. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-
versity of New York, Bronx, NY.

Find all pairs of integers m and n such that

2m = —1(modn) and n? = —2(modm).

Quickies

Answers to the Quickies are on page 238.
Q931. Proposed by Nick MacKinnon, Winchester College, Winchester, England.

Six pupils disrupted my lesson on Pascal’s triangle, so for a punishment I gave
each one a different prime number and told them to work out its tenth power by hand.
“That’s too easy,” said Blaise, whose prime was 3. “I’ll work out the product of ev-
erybody else’s answer instead.” Then she read out the forty-one digit answer and left.
What was the answer?

Q932. Proposed by Robert Gregorac, lowa State University, Ames, IA, and Murray S.
Klamkin, University of Alberta, Edmonton, AB, Canada.

Let A be aﬂ)int on a circle of center O and radius a, and let P be a point on the
extension of OA through A. A secant line from P intersects the circle in points Q
and Q’. Given a fixed position of P, determine the maximum area of triangle AQQ'.

Solutions

Sums of Primes and Squares June 2002

1648. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-
versity of New York, Bronx, NY.

Prove that there exist an infinite number of integers, none of which is expressible as
the sum of a prime and a perfect square.

The following solution was submitted by many readers.

We show that for each positive integer n, the number (3n + 5)? cannot be written
as the sum of a square and a prime. Indeed if (3n + 5)2 = m? + p for some positive
integers m and p, then

p=0Bn—m+50Gn+m+)5).
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If 3n —m +5 > 1, then p is not prime. If 3n —m +5 =1, then p = 6n + 9 and
again p is not prime.

Solved by Jack Abad, Bela Bajnok, Roy Barbara (Lebanon), Michel Bataille (France), Brian D. Beasley, D.
Bednarchak, Ton Boerkoel, Jean Bogaert (Belgium), Pierre Bornsztein (France), Marc Brodie, Doug Cashing,
John Christopher, Charles R. Diminnie, Daniele Donini (Italy), Russell Euler and Jawad Sadek, Fejentalaltuka
Szeged Problem Solving Group (Hungary), Charles M. Fleming, Ovidiu Furdui, William Gasarch, Marty Getz and
Dixon Jones, Julien Grivaux (France), Jerrold W. Grossman, Douglas Iannucci (Virgin Islands), Khudija Jamil,
John H. Jaroma, D. Kipp Johnson, Lenny Jones, Murray S. Klamkin (Canada), Ken Korbin, Victor Y. Kutsenok,
Elias Lampakis (Greece), Joe Langsam, Peter W. Lindstrom, S. C. Locke, Francesco Marino (Italy), Reiner Mar-
tin, Millsaps Problem Solving Group, Gary Raduns, Alex Rand, Robert C. Rhoades, Rolf Richberg (Germany),
John P. Robertson, James S. Robertson, Elianna Ruppin, Harry Sedinger;, Achilleas Sinefakopoulos, Richard M.
Smith, Albert Stadler (Switzerland), Steven Steinsaltz, Dave Trautman, Daniel G. Treat, Jim Vandergriff, Edward
Wang, Doug Wilcock, Dean Witter III, Japheth Wood, Li Zhou, David Zhu, and the proposer. There were two
solutions with no name.

Rational Bisectors June 2002
1649. Proposed by K. R. S. Sastry, Bangalore, India.

Prove that if a right triangle has all sides of integral length, then it has at most one
angle bisector of integral length.

Solution by Julien Grivaux, student, Université Pierre et Marie Curie, Paris, France.
We prove that there is at most one angle bisector of rational length. Let ABC be a

triangle with integer side lengths BC = a, CA = b, and AB = c. Let {,, £,, and £, be

the lengths of the angle bisectors from A, B, and C, respectively. It is well known that

Vs(s —a)bc,

where s = (@ + b + ¢)/2 is the semiperimeter of ABC. Similar expressions hold for
4, and £.. Hence

a

=b—|—c

8sabc
bt = G et a@+b) Vss—a)s =b)s =)

8sabc[ABC] %)
= s *
(b +c)(c+a)la+b)
where [ABC] denotes the area of ABC. Now assume that ABC is a right triangle with
right angle C. Then [ABC] = ab/?2 is rational, and it follows from (x) that £,¢,£. is
rational. Let H denote the intersection point of AB with the angle bisector from C.
Then '

£.(a+b)
22

and it follows that £, is irrational. Thus £,£¢, must be irrational, so £, and ¢, cannot
both be rational. This completes the proof.

1 1
[ABC] = [ACH] + [BCH] = Ebfc sin(45°) + Eaﬁc sin(45°) =

Note. Many readers noted that a = 2kmn, b = k(m* — n?) and ¢ = k(m? + n*) where
k, m, n are positive integers and m and n are relatively prime. Then

2 2

— 24/2 242
M e g = Y e and g, = 2Y2mnmAn)

m m-+n m—n

so £. is irrational and at most one of £, and £.. is rational.

Also solved by John Atkins and Herb Bailey, Roy Barbara (Lebanon), Michel Bataille (France), J. C. Binz
(Switzerland), Jean Bogaert (Belgium), Pierre Bornsztein (France), Marc Brodie, John Christopher, Chip Cur-
tis, M. N. Deshpande (India), Daniele Donini (Italy), Fejentalaltuka Szeged Problem Solving Group (Hungary),
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Ovidiu Furdui, Marty Getz and Dixon Jones, Brian D. Ginsberg, John F. Goehl, D. Kipp Johnson, Ken Korbin,
Victor Y. Kutsenok, Elias Lampakis (Greece), Peter W. Lindstrom, Francesco Marino (Italy), Rolf Richberg (Ger-
many), Ralph Rush, Raul A. Simon (Chile), Helen Skala, Albert Stadler (Switzerland), H. T. Wang, Li Zhou, David
Zhu, and the proposer.

Cutting a Polygon into Rhombi June 2002
1650. M. N. Deshpande, Nagpur, India

Let R(0) denote the rhombus with unit side and and a vertex angle of 6, and let
n > 2 be a positive integer. Prove that a regular 4n-gon of unit side can be tiled with
collection of n(2n — 1) rhombi consisting of n copies of R(7r/2) and 2n copies of each
of R(mk/2n),1 <k <n-1.

Solution by Marty Getz and Dixon Jones, University of Alaska, Fairbanks, AK.

Arrange 2n — 1 copies of R(wr/2n) with vertices meeting at a point P, and so that
all of the rhombi lie on or inside of an angle of measure w (2n — 1) /2n with vertex
at P. Note that if two adjacent rhombi share an edge with vertices P and Q, then the
other edges with vertex Q form an angle of measure 27 /2n, and 2n — 2 such angles
are formed. Add a second tier (as measured from P) of rhombi by nesting a copy of
R(2m/2n) in each of these angles. Continue this process, adding a third tier of 2n — 3
rhombi, a fourth tier of 2n — 4 rhombi, and so forth, until the (2n — 1)st tier, consisting
of one rhombus, is placed. The accompanying figure shows the resulting tiling for the
case n = 3.

P

Figure 1 Tiling a regular 20-gon

We now show that the tiling described is indeed a tiling of a regular 4n-gon and that
the rhombi tiling it are the desired ones. As observed above, the first and second tiers
consists of 2n — 1 copies of R(/2n) and 2n — 2 copies of R(2m/2n), respectively.
Now assume that k7 /2n and (k + 1) /2n are the vertex angles (oriented towards P)
for the kth and (k 4 1)st tiers, respectively. Then the vertex angle for the (k 4+ 2)nd
tier is

( (k + 1)71) ke (k+2)m
2r - 2{\m - ——— | - — = ———,
2n 2n 2n
and 2n — (k + 2) such angles are formed by adjacent pairs of rhombi in the (k 4 1)st
tier. Thus, 2n — (k + 2) copies of R((k 4+ 2)m/2n) fit in these angles to make the
(k + 2)nd tier. Because R(kw/2n) = R((2n — k) /2n), there are 2n copies of each

R(km/2n),1 <k <n —1, and n copies of R(r/2) in this construction. The first tier
contributes four outer edges to the tiling, and each subsequent tier contributes two outer
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edges. Thus the resulting figure is a 4n-gon with each side of unit length. Because each
pair of adjacent edges meets at an angle of

km +(n 3 (k+1)7'r) _ 2n -

9

2n 2n 2n

it follows that the tiled 4n-gon is regular.

Also solved by Daniele Donini (Italy), Fejentalaltuka Szeged Problem Solving Group (Hungary), Julien Gri-
vaux (France), Elias Lampakis (Greece), Li Zhou, and the proposer.

Bounds on the Gamma Function June 2002

1651. Proposed by Juan-Bosco Romero Mdrquez, Universidad de Valladolid, Val-
ladolid, Spain

Prove that for x > 2,

" == (3

where I' is the gamma function.

Solution by Michel Bataille, Rouen, France.

Let f(x) =(x —1)In(x/2) —InT(x)and g(x) =InT(x) + (x — 1) — (x — D Inx.
The inequality on the right will follow from (i) f(x) > 0, and the inequality on the
left from (ii) g(x) > 0. We establish both of these inequalities.

It is well known that for z £ 0, —1, =2, ...,

e vt 2 k
C'(z) = | I ok
@ z (k+z)e ’

k=1

where y is Euler’s constant. From this expression it is easy to show that

M) L& (1 AT 1 &
F(x)__y_x+z(k X+k) and dxF(x)_x2+Z(x+k)2’ )

k=1 k=1

forx > 0.

(i) By (*) we have

oy e (XY X ') B _1_°° 1
fo=m(3)+ T e W= ;—(ch)z'

Because

> 1 o0 1 1
Y= dr =1,
—(x+k)? " Jo (x40 x

it follows that f”(x) > 0 and f” is increasing for x > 0. Next note that

oy L '@ 1 f 1 (1 Ty 1
F@=3-"Ta =2 (” 2+k2=1:(k 2+k))"’ 20

Thus f'(x) > f'(2) > Oforx > 2, so f is increasing on [2, c0). The conclusion
f(x) = 0 on this interval follows because f(2) = —In['2) = —In1 = 0.
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(i) By (%),

, I (x) B o L.
gx)= l"()+_ Inx = —y lnx+Z( x+k)'

For positive integer n, let H, = Y;_, +. Because

d 1 LS|
< dt = In(x +n) —Inux,
;xﬂLk /0x+t )
we have

X /] 1
—y 4+ H, 1 —1n<1+7>5— PRI N .
v e n v N AZ|<k x+k)

Letting n — oo and recalling that lim, ...(H, — y —Inn) = 0, we obtain 0 <
g'(x). Itfollows that g(x) > g(2) = 1 — In2 > 0. This completes the proof of (ii).

Also solved by Mihaly Bencze (Romania), Paul Bracken (Canada), Daniele Donini (Italy), Ovidiu Furdui,
Julien Grivaux (France), Murray S. Klamkin (Canada), Elias Lampakis (Greece), Peter W, Lindstrom, Daniel A.
Morales (Venezuela), Luis Moreno, Rolf Richberg (Germany), Li Zhou, and the proposer:

Some Geometric Inequalities June 2002

1652. Proposed by Razvan A. Satnoianu, Oxford University, Oxford, United Kingdom.

In triangle ABC, let r denote the radius of the inscribed circle, R the radius of the
circumscribed circle, and p the semiperimeter. Prove the following inequalities, and
show that in each case the constant on the right is the best possible:

R
@ —+—=>2.

P
by "+ P 283
pr 9

© r+/)>56 R+p
) —+—>—|—+—=).
p r 31\p R
Solution by Achilleas Sinefakopoulos (student), Cornell University, Ithaca, NY.

It is well known that inequality (a) holds for all positive real numbers R and p. To
show that the constant on the right is best possible, we need only show that there is a
triangle with R = p. To this end, note that by the Intermediate Value Theorem there is

areal number 6 € (0, 7/2) withcosf(sinf + 1) = % Consider the triangle ABC with
A =26 and B = C = /2 — 6. Then by the law of sines

% =sinA +sin B +sinC =sin26 + 2cosf = 2cosf(sinf + 1) =1,

showing that equality is possible.
Now let a, b, ¢ be the lengths of the sides of ABC, and recall that

ab +bc+ca=p*+r*+4Rr and abc = 4Rrp.

Thus

= ISRF,

) ) 1 1 1 9abc 9abc
p-+r +4Rr =ab+bc+ca=\—+ -+ - )abc > =
a b ¢ a+b+c 2p
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so p? 4+ r? > 14Rr. Hence

2 2
r+£=r +p >14Rr_14R

p T pr T pr p

Thus, to prove inequalities (b) and (c), it suffices to show that

BB g R4 (R, D)

d => +
an P R

p 9 P 31
respectively. However, both of these are equivalent to the well-known inequality 2p <
34/3R, which follows from

14 . . . Yz 3V3
— = A B c<3 - )= —
R sinA+smB+smC < s1n(3> 2

When ABC is equilateral, the above inequalities become equalities, showing that the
constants on the right of (b) and (c) are best possible.

Also solved by Herb Bailey, Roy Barbara (Lebanon), Michel Bataille (France), Jean Bogaert (Belgium),
Pierre Bornsztein (France), Chip Curtis, Daniele Donini (Italy), Ovidiu Furdui, Julien Grivaux (France), Murray

S. Klamkin (Canada), Ken Korbin, Elias Lampakis (Greece), Rolf Richberg (Germany), Raul A. Simon (Chile),
Li Zhou, and the proposer.

Answers

Solutions to the Quickies from page 233.

A931. If the number Blaise recited was x'°, then 10*° < x'* < 10*!, s0 10* < x <
10*'. The smallest possible value for x is 2-5-7-11-13 = 10010, which falls in
the desired range. The next smallest possibility is2-5-7 - 11 - 17 = 13090, which is
greater than 10*!. Therefore, Blaise worked out (2-5-7 - 11 - 13)!°. Our problem is
to describe how she did this.

First observe that 7 - 11 - 13 = 1001, and

1001'° = (1000 + 1)'° = 1000' + 10 - 1000° + 45 - 1000® - - - + 10 - 1000 + 1,

with the coefficients 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 coming from the
tenth row of Pascal’s triangle, presumably still on the board from the lesson. Because
none of these coefficients has more than three digits, Blaise can simply read out

1001'° = 001 010 045 120 210 252 210 120 045 010 001,

and append ten Os to the end.

A932. Let ¢ = AP as in FIGURE 2. The altitudes H of T = AQ’OQ and H, of T} =
A Q'AQ from O and A to PQ are parallel, so by similar triangles,
H[ C

H a+c

It follows that the area of T; is k times the area of T because they have the same
base QQ'. Thus T and T; will both have maximum area for the same secant PQ. It is
clear that the maximum area for T is a?/2 and is attained when /Q’OQ = 7 /2. The
corresponding area of T is k(a”/2) = a*c/(2a + 2c).
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60 Years Ago in the MAGAZINE

Editorial comment by S. T. Sanders, Vol. 18, No. 1, (Sept.—Oct., 1943):

Post-War Planning in Mathematics

Many teachers are nervously concerned over what may be the post-war status
of school mathematics. The enormous expansion of the technical applications of
the science under pressure of war has brought about a world-wide strengthening
of mathematics in the school curriculum. Can this current academic primacy of
mathematics be made permanent? Such is the question raised by those keenly
mindful of the scant attention paid to this subject by the less recent curriculum
makers.

A careful study of the matter should not discount the fact that in respect to
mathematics, the war has served only to bring about greatly multiplied uses of
mathematics a large proportion of which were already in existence. For, even in
pre-war times there had been for many years a steadily growing public emphasis
upon applied mathematics, rather than upon the logical or cultural aspects of the
science.

In the light of this definite trend, a trend not rooted in any war, it could well be
that the post-war school effort should first be directed to discovering the mathe-
matical aids or needs of all the major peace-time industrial enterprises.

When they [the Delians] consulted him [Plato] on the problem set them by the
Oracle, namely that of duplicating the cube, he replied, “It must be supposed,
not that the god specially wished this problem solved, but that he would have
the Greeks desist from war and wickedness and cultivate the Muses, so that,
their passions being assuaged by philosophy and mathematics, they might live in
innocent and mutually helpful intercourse with one another.”

—from the Preface to Sir Thomas Heath’s
A History of Greek Mathematics,
written during World War 1.
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versity) and Jorge Mahecha (University of Antioquia, Colombia)! They follow a strategy of
M. Pitkdnen “based on the orthogonality relations between eigenfunctions of a non-Hermitian
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(12 November 2002), www.arxiv.org/format/math.DG/0211159 ; Ricci flow with surgery on
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Maybe the Poincaré Conjecture (PC) has been proved, too, by Grigori Perelman (Steklov In-
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conjecture for closed three-manifolds: William Thurston (UC-Davis, then at Princeton) had
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no holes. Perelman’s proof uses a technique called the Ricci flow, invented by R.S. Hamil-
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ometrization conjecture.

240



VOL. 76, NO. 3, JUNE 2003 241

Chui, Glennda, A good proof despite math goof, San Jose Mercury News (7 May 2003),
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Well, in the past few years there have been popular books devoted to ¢, 7, i, and 0; but I never
imagined that there would be a book devoted solely to y, the limit of the “discrepancy” involved
in approximating a partial sum of the harmonic series by the natural logarithm:
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n—oo n—oo | 2 n

Actually, unlike some of those books on other constants, this book is not for a popular audience,
since it is chock full of mathematical expressions involving sums, limits, and integrals, and it
goes far beyond y to explore the gamma function, the prime number theorem, and the Riemann
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This book sets out toward the ambitious goal of providing “the foundation for a scientific the-
ory of marital relations.” The authors, who include a psychologist, a mathematician, and their
students, set out to provide an underlying theory to explain their ability to predict the fate of a
marriage (with 90% accuracy) from observing a single 15-minute interaction of a couple. They
briefly review research on marriage, followed by 100 pp of introduction to calculus, differen-
tial equations, and catastrophe theory, before getting down to the modeling. The model itself is
couched as a pair of difference equations that involve two threshold and four influence parame-
ters for each spouse; those parameters can be estimated from scoring the 15-minute interaction
of a couple. The authors’ analysis focuses on steady states of the model and their stability. They
go on to assess the value of the model; apply it to newlyweds, homosexual relationships, and
parent-baby interaction; and use it to evaluate forms of couples therapy.
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2003; viii + 255 pp, $49.95 (P) (members, $35.95). ISBN 0-88385-714-6.

This book has 14 chapters that treat environmental problems of all kinds (with real data) using
only high-school mathematics; each chapter includes exercises and references. A book such
as this poses a new paradigm for a mathematics course to satisfy a distribution or quantitative
requirement: Treatenvironmental problems, focus on mathematical modeling, apply mathemat-
ics that is mostly familiar, and introduce new mathematics on a “just in time” basis. Alumni of
such a course would have no doubt about the usefulness and importance of mathematics in
addressing vital problems.
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edited by Titu Andreescu and Zuming Feng

2002 Olympiad Results

The top twelve students on the 2002 USAMO were (in alphabetical order):

Steve Byrnes West Roxbury, MA
Michael Hamburg  South Bend, IN
Neil Herriot Palo Alto, CA
Daniel Kane Madison, WI
Anders Kaseorg Charlotte, NC
Ricky Liu Newton, MA
Tiankai Liu Saratoga, CA
Po-Ru Loh Madison, WI
Alison Miller Niskayuna, NY
Gregory Price Falls Church, VA
Tong-ke Xue Chandler, AZ

Inna Zakharevich  Palo Alto, CA

Daniel Kane, Ricky Liu, Tiankai Liu, Po-Ru Loh, and Inna Zakharevich, all with per-
fect scores, tied for first on the USAMO. They shared college scholarships of $30,000
provided by the Akamai Foundation. The Clay Mathematics Institute (CMI) award, for
a solution of outstanding elegance, and carrying a $1,000 cash prize, was presented to
Michael Hamburg, for the second year in a row, for his solution to USAMO Problem 6.

The USA team members were chosen according to their combined performance on
the 31st annual USAMO and the Team Selection Test that took place at the Math-
ematics Olympiad Summer Program (MOSP) held at the University of Nebraska-
Lincoln, June 18-July 13, 2002. Members of the USA team at the 2002 IMO (Glas-
gow, United Kingdom) were Daniel Kane, Anders Kaseorg, Ricky Liu, Tiankai Liu,
Po-Ru Loh, and Tong-ke Xue. Titu Andreescu (Director of the American Mathematics
Competitions) and Zuming Feng (Phillips Exeter Academy) served as team leader and
deputy leader, respectively. The team was also accompanied by Reid Barton (Mas-
sachusetts Institute of Technology), Steven Dunbar (University of Nebraska-Lincoln)
and Zvezdelina Stankova (Mills College), as the observers of the team leader and
deputy leader.

At the 2002 IMO, gold medals were awarded to students scoring between 29 and
42 points (there were three perfect papers on this very difficult exam), silver medals
to students scoring between 23 and 28 points, and bronze medals to students scoring
between 14 and 22 points. Loh’s 36 tied for fourth place overall. The team’s individual
performances were as follows:
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Kane West HS GOLD Medallist
Kaseorg Home-schooled SILVER Medallist
R. Liu Newton South HS GOLD Medallist
T. Liu Phillips Exeter Academy GOLD Medallist
Loh James Madison Memorial HS GOLD Medallist
Xue Hamilton HS Honorable Mention

In terms of total score (out of a maximum of 252), the highest ranking of the 84 par-
ticipating teams were as follows:

China 212 Taiwan 161
Russia 204 Romania 157
USA 171 India 156
Bulgaria 167 Germany 144
Vietnam 166 Iran 143
Korea 163 Canada 142

Note: For interested readers, the editors recommend the USA and International
Mathematical Olympiads 2002. There many of the problems are presented together
with a collection of remarkable solutions developed by the examination committees,
contestants, and experts, during or after the contests.

Problems

l.

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x
and y are nonnegative integers and x + y < n. Each point of T is colored red or
blue. If a point (x, y) is red, then so are all points (x’, y') of 7" with both x’ < x and
y" < y. Define an X-set to be a set of n blue points having distinct x-coordinates,
and a Y-set to be a set of n blue points having distinct y-coordinates. Prove that the
number of X-sets is equal to the number of Y -sets.

Let BC be a diameter of circle @ with center O. Let A be a point of circle w such
that 0 < ZAOB < 120°. Let D be the midpoint of arc AB not containing C. Line
¢ passes through O and is parallel to line AD. Line ¢ intersects line AC at J. The
perpendicular bisector of segment OA intersects circle w at E and F'. Prove that J
is the incenter of triangle CEF.

Find all pairs of integers m,n > 3 such that there exist infinitely many positive
integers a for which

a”+a-—1
a+a?—1
is an integer.

Let n be an integer withn > 2. Let 1 =d; < d, < --- < d;, = n be all the divisors
of n.

(a) Prove that D, = d\d> + dods + - - - + di_1dy < n?;
(b) Determine all n such that D is a divisor of n°.

. Find all functions f : R — R such that

(fG)+ f@OISfO) + f(1) = flxy —zt) + f(xt + y2)

for all real numbers x, v, z, t.
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6. Let nbean integer withn > 3. Let Iy, I'5, ..., I', be unit circles in the plane, with
centers Oq, O,, ..., O,, respectively. If no line meets more than two of the circles,
prove that

Z 1 <(n—1)7r‘
0,0, — 4

I<i<j=n J

Solutions

1. For0 < i, j <n — 1, let aq; denote the number of blue points with x-coordinate i,
and let b; denote the number of blue points with x-coordinate j. We need to show
that two products are equal:

apd - -+ Ay = boby ---b,_. M

If a; = 0 for some i, then (i,n — 1 — i) is red, and so are all the points to the
left of (i,n — 1 — i), implying that b,_;_; = 0. In this case, (}) is true. Now we
assume that all @; > 0. Then all the points on line x + y = n — | are blue. We
assign a weight of 1 to each of them. Then we assign a weight of 2/1 to each blue
point on line x + y = n — 2, a weight of 3/2 to each blue point on line x +y =
n — 3, and so on. In particular, each point on line x + y=n —k (1 <k <n)is
assigned a weight of k/(k — 1). In column j, points (j,n — 1 — j), (j,n —2 — j),
., (j,n — ar — j) are the blue points. Those points have weights 1,2/1,3/2,
.., ai/ai_y, so the product of the weights in column £ is a;. Because each blue
point belongs to exactly one column, the product of all the weights of blue points
is apay . . .a,—1. In the same way, we can show that the product of all the weights of
blue points is bob; . .. b,_;. Therefore (1) is true.

2. One of the hardest part of solving this problem is to use the condition 0° < /AOB <
120° effectively to deal with the configuration of this problem. Let P be the mid-
point of segment OA, and let £’ be the perpendicular bisector of segment OA. With-
out loss of generality, let E be the intersection of £’ and w on the same side of line
OA as B, and let F be the intersection on the same side as C. Note that we can
make this assumption because 180° > ZAOB > 0°, so A does not coincide with
B or C. Observe that AE = OE = OA, so triangle AOE is equilateral. Similarly,
triangle AOF' is equilateral. Thus ZFOB = /AOB + 60° < 180°. Thus, F lies on
minor arc AC. Note also that ZAOD = 1/AOB < 60° = LAOE. Hence C and D are
on the opposite of sides line EF.

Because arcs AE and AF both measure 60°, segment CJ is the internal angle
bisector of ZECF. Since, /DOB = ;AAOB = /ACB, OD | AC. On the other hand,
we are given DA | OJ. Thus, quadrilateral AJOD is a parallelogram with center P.
Note also that DEJFis a parallelogram as P is the midpoint of both of the segments
EF and DJ. Therefore D and J are on the opposite side of line EF. Consequently,
J lies inside of triangle CEF.

We now show that J also lies on the internal angle bisector of /FEC. Since E
and F are reflections of each other about P, it follows by reflection through P that
LFEJ = (DFE. It remains to show that /DFE = %AFEC, which is equivalent to

showing that ZDOE = 1 /FOC. Indeed,
(DOE = (AOE — [AOD = 60° — 1 /AOB = 1(180° — (LAOB + 60°))
= 1(180° — (LAOB+ LFOA)) = 1/FOC,

as desired.
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3. We assume that reader can prove the following result: If f(x) and g(x) are rational
polynomials with rational coefficients such that g(x) # 0 and there exist infinitely
many positive integers a such that f(a)/g(a) is an integer, then f(x) is divisible
by g(x), that is, there is a polynomial p(x) with rational coefficients such that

Fx) =gx)pkx).
The pair (m, n) = (5, 3) is the unique solution. First verify that

@ +a—1

_ 2
7a3+a2—1 =a" " —a+1,

which is an integer whenever a is an integer. Now we will prove that (m, n) = (5, 3)
is the only possible solution. By the result stated above, we have

" H+x2=D " 4+x=1). (1)
This implies that n < m, and that

"+ X7 =D | [+ D" +x — 1) — (" +x2 = 1)]

= X" = T e ).
Thus
(" = D e,
and consequently n <m —n + land 2 <n — | <m — n. Because 0" + 02 —-1=

—land 1" 4+ 17> — | = I, there exists « in the interval (0, 1) such that " + o —
1 =0 Because n <m —n+1and 2 < m — n, we have o" > " """ and o >
a”™ ", 50 0 > """ + """ — 1. Equality must hold here because any root of
x" 4+ x? — | must also be a root of x” "' 4+ x”~" — |, so we must have n = m —
n+1and2 =m — n. Thus, m = 5 and n = 3, as claimed.

4. Note thatif d is a divisor of n, so is n/d. Hence

D, 1 n n n n n n
FZE(E'£+E'E+”'+K‘I)
1 1 1 1 1 1
:T diy  dioy dk—2+.“+CTzlz
(3 )
~ dis  dioy d
_d_l_d_k<1

that is, D, < n?, as desired.

Note also that d, = p and d,_, = n/ p, where p is the least prime divisor of #.
If nisaa prime, then k = 2 and D, = p, which divides n”> = p°.

If n is composite then k > 2, and D, > d;_,d;, = n*/p, so n*/D, < p.If such
an D, were a divisor of n? then also n*/D, would be a divisor of n2. But then
1 < n?/D, < p, which is impossible as p is the least prime divisor of n?.

Therefore, D, is a divisor of n if and only if » is prime.
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5. The answers are f(x) =0 forall x € R, f(x) = 1/2 forall x € R, and f(x) =
x? for all x € R. These functions work because (0 + 0)(0+0) = 0 =0+ 0,
1/2+1/2)1/2+1/2)=1=1/2+1/2, and

P+ )G+ 1) = x +zilPly + yil® =[x+ 2i) (v + 1)
= |(xy —2t) + (xt + y2)i|* = (xy — 2t)* + (xt + y2)*,

where i> = —1. There are at least two approaches to prove they are these only
functions that satisfy the given conditions. The first approach makes a connection
with complex numbers, in the light of the above identity. The second approach uses
common skills of solving functional equation problems. We present only the first
approach.

For a complex number w = a + bi, where a,b € R, let Re(w) = a and

Im(w) = b. In other words, Re(w) and Im(w) denote the real and imaginary part
of w. We define a function g : C — R such that

g(@) = f(Re(w)) + f(Im(w)).

For complex numbers ¢ = x + zi and d = y + ti, where x, y, z,t € R, we have
cd = (xy — z2t) + (xt + yz)i and

gl)g @) =[fX)+f@QIfM+ f®O] = fxy —zt) + f(xz+ yt)
= g((xy — zt) + (xz + yt)i) = g(cd),

that is, g is multiplicative.

Hence £(0)g(0) = g(0) and g(1)g(1) = g(1), implying that g(0), g(1) € {0, 1}.

If g(0) =1, then g(0) = f(0) + f(0) =1 and f(0) = 1/2. For r € R,
g(r)g0) =g@0) =1, s0 1 =g@r) = f(r)+ f(0). Consequently, f(r) =1/2
forall r € R.

If g(0) =0, then f(0)+ f(0) = g(0) =0,s0 f(0)=0. Forr € R, g(r) =
f@r)+ f(O) = f(r). Hence

gr)= f(r) forallr e R. (1)

If g(1) =0, then f(r) = g(r) = g(1)g(r) = 0, implying that f(r) = 0 for all
' ENIE;V we are left to consider the case g(0) = 0 and g(1) = 1. For w € C, there
exists a complex number @’ such that w” = w. By (1),

g(w) =g@)?* >0 forallwe C. (2)
Note that forc,d € R and w = ¢ + di,

gw) = f(c) + f(d) = giw),
where @ = ¢ — di is the conjugate of @. Hence
8(©)" = g(w)g(w) = g(w)g(iw) = g(iwm) = g(ilwl’).

Hence by (2), g(w) = W Therefore, for w;, w, € C,

glwy) = g(wr) if || = |wal. 3)
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We now show that g(y/n) = n for all positive integers n. We use induction on 7.
For n = 1, our claim is true because g(~/1) = g(1) = 1. Assume that g(/n) =n
for some positive integer n. By (3) and then by (1), We have

gWn+)=gWn+i)=fWn)+ f()=gWn)+g)=n+1,

which completes our induction.
We next show that g(,/q) = ¢* for all positive rational numbers ¢. Indeed, we
can write |¢| = e/f where ¢ and f are positive integers. Then by (3),

@) = g(lg)) = (5)— (©) (1)— ©- 50 L _p
8@ =glgh =g |7 ) =gl ) =80 5 ="75=4"

as claimed.
We now show that for w,, w, € C, if |w;| > |w,| then g(w;) > g(w»). Indeed by
(3), by (1), and then by (2), we have

g(w)) = gllws| +iv|wi|> — |w:|?) = f(lwa]) + f > = o |?)
= g(lon]) + (Vw1 > — |@2]?) > g(|wal) = glws).

as claimed.

Finally, we claim that g(w) = |w|* for all w € C. For the sake of contradic-
tion, we assume that there is w € C such that g(w) # |w|>. Because Q is dense
in R, there exists ¢ € Q such that ¢ is strictly between |w| and /g(w). If |w| >
q > +/g(zw), then g(w) > g(g) = g* by previous two claims. Hence /g(w) > ¢,
which is a contradiction. If |w| < ¢ < /g(w), then g(w) < g(q) = g* by previ-
ous two claims. Hence +/g(w) < g, which is also a contradiction. Therefore our
assumption was wrong and g(w) = |w|? for all z € C. By (1), f(x) = g(x) = x?
for all x € R.

Therefore the only solutions are f(x) = 0, f(x) = 1/2,and f(x) = x>

6. For each circle I';, consider the set of tangent lines to I';. By the given condition,
each tangent line can pass through at most one other circle. The points of I'; for
which the tangents at those points do indeed intersect another circle form arcs on I';.
We relate the sum of the lengths of these arcs, summed over all the circles, to
> 1/0;0;.

For any pair of circles I';, I';, there are four arcs, two on each circle, for which
the tangents at points on the arcs intersect the other circle. These arcs are deter-
mined by the common internal and external tangents to I'; and I';. For example,
say T is the point of tangency of one of the internal tangents with I';, and S is the
point of tangency of I'; with the external tangent on the same side of O;0; as T.
Then arc §T is one of the four arcs, and the other three are congruent to it. Let P be
the midpoint of segment O; O;, and let « = £O;PT = /SO; T. Because I'; has unit
radius, arc ST has length a. On the other hand, considering right triangle O;TP, we
havesina = 2/0;0;. Because sina < «, 2/0; O; is less than the length of arc ST.
Multiplying this by four, the total contribution of I';, I'; to the sum of all the arc
lengths exceeds 8/ 0, O;.

Next we find a bound on the sum of the arc lengths. As noted earlier, no two arcs
may intersect. Thus, we immediately see that the sum of the arc lengths is at most
the sum of the circumferences of all the circles, 2nw. We can improve this bound
by considering the convex hull of all the I';. For any point on the boundary of the
convex hull and on a circle I';, the tangent to I'; at that point cannot intersect another

(continued on p. 231)
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fast a Martian canal boat can go, then this is the book

for you.”—Neil A. Downie, author of Vacuum

Bazookas, Electric Rainbow Jelly, and 27 Other

Saturday Science Projects

$24.95 hardcover

measure for measure
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VOODOO DEATHS, OFFICE GOSSIP AND

OTHER ADVENTURES IN PROBABILITY
Bart K. Holland

“If you have ever wondered
about the chances of a
Prussian cavalryman being

PASCALS
ARITHMETICAL
TRIANGLE

THE STORY OF A

kicked to death by his horse L MATHEMATICAL IDEA

or if you prefer to work out p y A. W.F. Edwards

your own life expectancy by Voodoo Peaths, ! “An impressive culmination of

staring ot ife tables, then Bart Office Gossip meticulous research into original
Holland’s excellent primer on : sources, this definitive study constitutes
probability is a great place to ¢ Other ",, ¢ the first full-length history of the

ST LI Adventures , $ _ | Arithmetic Triangle.“—Mothematics of

gnecdote and ‘ponuc‘ seem to in Probability ’,
influence public policy more e

than objective analysis,
Holland has provided a
welcome reminder of the
power of the analytical
approach.”—Simon Singh,
New Scientist

$24.95 hardcover

“ Computation
: “Recommended not only to historians
and mathematicians, but also to
students seeking to put some life into
the dry treatment of these topics to
which they have doubtless been
subjected.”—lvor Grattan-Guinness,
Annals of Science

$18.95 paperback

THE JOHNS HOPKINS UNIVERSITY PRESS ¢ 1-800-537-5487 * www.jhupbooks.com
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101 Careers in
J J Mathematics

_ _ Second Edition
Caseessan Mathematics Andrew Sterrett, Editor

Series: Classroom Resource Materials
Andrew Sterrett, Editor
This second edition of the immensely popular, 707
Careers in Mathematics, contains updates on the
career paths of individuals profiled in the first edition,
N WA ) along with many new profiles. No career counselor

should be without this valuable resource!

Praise for the first edition of 101 Careers in Mathematics...

I recommend this book highly to teachers at both the high school and the college
level who teach mathematics.
—AAAS, Science Books and Films

| liked this book: it made me think about the breadth of my profession, and that
forced me to think about its depth as well....Get a copy of 101 Careers in
Mathematics to see what comes out the far end of the mathematics education
pipeline. Its thought provoking.

—J. Kevin Colligan in The College Mathematics Journal

The authors of the essays in the this volume describe a wide variety of careers for
which a background in the mathematical sciences is useful. Each of the jobs
presented show real people in real jobs. Their individual histories, demonstrate how
the study of mathematics helped them land good paying jobs in predictable places
like IBM, AT&T, and American Airlines, and in surprising places like FedEx
Corporation, L.L. Bean, and Perdue Farms, Inc. You will also learn about job oppor-
tunities in the Federal Government, as well as exciting careers in the arts, sculpture,
music and television. There are really no limits to what you can do if you are well
prepared in mathematics.

Catalog Code: OCM/JR ® 360pp., Paperbound, 2003 e 0-88385-728-6
List: $34.95 © Member: $27.95

Order your copy today!

www.maa.org or 1-800-331-1622
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What more could one do with the venerable Maple™ worksheet environment?

Plenty! First, notice how everything has a fresher look about it, right down to the graphics. Then, expiore the new help interface that effortlessly
tames the immense Maple help knowledge base. Wow! Maple 9 even puts in the semicolon for you at the end of a command! In fact, the command
completion feature will even guide you through the arsenal of Maple tools. No rocket science here ... just countless improvements to make the
Maple experience smoother, easier and more productive ... and if you are a rocket scientist, Maple 9 delivers a host of new NAG* algorithms,
optimized MATLAB and Visual Basic® code generation, industrial strength FFT, OpenViz™ rendering, and the OpenMaple™ API for accessing the
power of Maple 9 from external applications. If you teach, you'll appreciate the wealth of new resources, packages for education, Mapiet™ Web
connectivity via MapleNet™*, and Mac 0S® X support.

*Note: MapieNet not included with purchase of Maple 9

maple9
For more information, call 800.267.6583. ‘ m e
Outside the US & Canada, call 519.747.2373 i : "anle‘“s""("jft
o

command the brillinnce

for your local distributor. N, wuww.moplesoft.com | t.519.747.2373
o f.519.7475284 | info@maplesof.com

US & Canado 800.267.6583

or visit www.maplesoft.com

6 Maplesoft. a division of Waterioo Mapie inc 2003. Maplesoft. Mapie,
OpenMaple. MapleNet, and Maplet ars tradesarks of Waterloo Mapie Inc.
Allother trademarks arethepropertyoftheir respective owners.
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A Friendly
— Mathematics
wma = | Competition:

| Thirty-five Years of
Teamwork in

-
Agriendly |.I1d‘lalla .
MATHEMATICS sy Rick Gillman, Editor
COMPETITION Series: Problem Books
" 4

A Friendly Mathematics Competition tells the story of the Indiana College
Mathematics Competition (ICMC) by presenting the problems, solutions,
and results of the first thirty-five years of the ICMC. The ICMC was organized
in reaction to the Putnam Exam—its problems were to be more representa-
tive of the undergraduate curriculum, and students could work on them in
teams. Originally participation was restricted to the small, private colleges
and universities of the state, but it was later opened up to students from all
of the schools in Indiana. The competition was quickly nicknamed the
"Friendly" Competition because of its focus on solving mathematical
problems, which brought faculty and students together, rather than on the
competitive nature of winning. Organized by year, the problems and solu-
tions in this volume present an excellent archive of information about what
has been expected of an undergraduate mathematics major over the past
thirty-five years. With more than 245 problems and solutions, the book is
also a must buy for faculty and students interested in problem-solving.

Catalog Code: FM/JR ® 169 pp., Paperbound, 2003 ¢ 0-88385-808-8
List: $29.95 « Member: $24.95

Order your copy today!

www.maa.org or 1-800-331-1622
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Environmental
Mathematics in
= the Classroom

B.A. Fusaro & P.C. Kenschaft, Editors
Series: Classroom Resource Materials

Mathematics

Environmental Mathematics in the
Classroom seeks to marry the most press-
ing challenge of our time with the most
powerful technology of our time—
mathematics. It does so at an elementary
level, demonstrating a wide variety of
significant environmental applications
P.C Comchan that can be explored without resorting to
» the calculus. Several chapters are accessi-
ble enough to be a text in a general
education course, or to enrich an elementary algebra course. Ground level ozone,
pollution and water use, preservation of whales, mathematical economics, the
movement of clouds over a mountain range, at least one population model, and a
smorgasbord of newspaper mathematics can be studied at this level and can be the
basis of a stimulating course that prepares future teachers not only to learn basic
mathematics, but to understand how they can integrate it into other topics. Also,
many of the chapters are advanced enough to challenge prospective mathematics
majors. Environmental Mathematics in the Classroom can be a text for an inde-
pendent mathematics course. With the expertise of another teacher, it could be the
basis of an interdisciplinary course relating to mathematics and science. It can also
serve as an excellent supplementary reader for teachers and their students, either for
recreation or as the basis of independent study.

Catalog Code: EMC/JR * 268 pp., Paperbound, 2003 e 0-88385-714-6
List: $49.95 ¢ Member: $35.95

Order your copy today!

www.maa.org or 1-800-331-1622
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